Studies were carried out on the bioefficacy and residual activity of Bacillus thuringiensis israelensis H-14 (Bti) (water-dispersible granules of VectoBac ABG 6511 and liquid formulations of VectoBac 12AS) and pyriproxyfen (insect growth regulator, Sumilarv 0.5%) as direct applications for control of larvae of Aedes aegypti and Aedes albopictus. Two dosages of each Bti formulation (285 and 570 international toxic units [ITU]/liter) and the integration of both Bti formulations and pyriproxyfen were used for residual tests with 45-liter earthen jars for a period of 4 wk. In 1 test series, the treated water was replenished daily with 6 liters of seasoned untreated water. In the 2nd test series, the water in the jars was topped up to the 40-liter level during evaluation. Neither Bti formulation remained effective for a full week. Water-dispersible Bti granules provided effective initial control activity against Ae. aegypti and Ae. albopictus for both test designs (with replenishment and without replenishment of water). The higher dosage (570 ITU/liter) for both Bti formulations was only partially effective at the end of 1 wk after being diluted. After 1 wk, water-dispersible Bti granules provided greater larval mortality than did liquid Bti formulation against both mosquito species when integrated with pyriproxyfen. Pyriproxyfen (79.5 and 159 mg/liter) on its own showed low larvicidal activity but provided very effective control of adult emergence. In this study, integration of Bti (285 and 570 ITU/liter) with pyriproxyfen (79.5 mg/liter) extended the duration of partial larval control somewhat, but live larvae persisted throughout the 4-wk test. The integration effect was more obvious when water-dispersible Bti granules were integrated with pyriproxyfen than when liquid Bti was used. Integration of Bti with pyriproxyfen had a negative effect on adult emergence, which was completely inhibited by pyriproxyfen after day 1. Daily replenishment of water increased Bti activity and provided slightly better larval control. Aedes albopictus and Ae. aegypti were both completely susceptible to the higher concentration of Bti and pyriproxyfen in both test designs (with replenishment and without replenishment of water).
Indoor bioefficacy of the thermal fogging application of Pesguard FG 161, a formulation containing both knockdown and killing agents (active ingredient [AI]: d-tetramethrin 4% [w/w] and cyphenothrin 12% [w/w]) was compared with Resigen5 (AI: s-bioallethrin 0.8% [w/w], permethrin 125/75] 18.7% [w/w], and piperonyl butoxide 16.8% [w/w]), another pyrethroid formulation, as larvicides and adulticides against Aedes aegypti, Aedes albopictus, Anopheles sinensis, and Culex quinquefasciatus using a portable Agrofog AF35 sprayer indoors in houses on Penang Island, Malaysia. Pesguard FG 161 at the concentrations tested was effective against all 4 mosquito species tested. The water-based Pesguard FG 161 performed far better as a larvicide than the diesel-based formulation. Resigen was also effective as a larvicide and adulticide against all 4 mosquito species tested. Larvae of Ae. aegypti were most susceptible to water-based Pesguard FG 161, followed by Cx. quinquefasciatus, An. sinensis, and Ae. albopictus. Even at the lowest concentrations tested, Pesguard FG 161 showed adequate adulticidal properties. At higher dosages, water-based Pesguard FG 161 proved effective as a larvicide against all 4 mosquito species.
Dengue vector control still heavily relies on the use of chemical insecticides, and the widespread use of insecticides has led to resistance in mosquitoes. The diagnostic dose is a key part of resistance monitoring. The present study corroborates the discriminating lethal doses of temephos and malathion based on dose-response of known susceptible strain of Aedes albopictus following the World Health Organization (WHO) diagnostic test procedure. Late 3rd and early 4th instars were tested with a range of larvicides to determine the lethal concentrations (LC50 and LC99) values. A slightly higher diagnostic dose of 0.020 mg/liter as compared with the WHO-established value of 0.012 mg/liter was observed for temephos. Meanwhile, a malathion diagnostic dose of 0.200 mg/liter is also reported here since there are no such reported values by WHO. Doubling the LC99 values of susceptible strains, 3 of the 5 wild-collected populations showed resistance to temephos and 2 showed incipient resistance; all 5 populations showed incipient resistance to malathion. The revised and established lethal diagnostic dose findings from the current work are crucial to elaborate on the variation in susceptibility of Ae. albopictus in future resistance monitoring programs in Malaysia.
Aedes-borne virus disease control relies on insecticides to interrupt transmission. Temephos remains a key chemical for control of immature stage Aedes in Thailand and much of Southeast Asia. However, repeated use of insecticides may result in selection for resistance in vector populations, thus compromising operational intervention. Herein, the phenotypic response to temephos by Aedes aegypti (L.) and Aedes albopictus (Skuse) collected in Thailand and surrounding countries is presented. Data from 345 collection sites are included: 283 from literature review (244 sites with Ae. aegypti, 21 with Ae. albopictus, and 18 having both species sampled), plus 62 locations with Ae. aegypti in Thailand conducted between 2014 and 2018. Susceptibility assays followed WHO guidelines using the recommended discriminating dose of temephos (0.012 mg/liter) against late third to early fourth instar Ae. aegypti. Findings revealed 34 locations with susceptible Ae. aegypti, 13 with suspected resistance, and 15 indicating resistance. Published data between 1999 and 2019 in Thailand found Ae. aegypti resistant in 73 of 206 collection sites, whereas 3 locations from 11 sampled with low-level resistant in Ae. albopictus. From surrounding countries conducting temephos assays (Cambodia, Lao PDR, Myanmar, Malaysia, and Singapore), resistance is present in Ae. aegypti and Ae. albopictus from 27 of 56 and 19 of 28 locations, respectively. Routine insecticide susceptibility monitoring should be an operational requirement in vector control programs. Given the wide distribution and apparent increase in temephos-resistance, alternative larvicidal compounds must be considered if chemical control is to remain a viable vector control strategy.
The effectiveness of chlorantraniliprole and other insecticides (bifenthrin, fipronil, indoxacarb, imidacloprid and chlorfenapyr) were tested against Coptotermes gestroi (Wasmann). Four experiments were conducted: a topical bioassay, a horizontal transfer study, an insecticide bioavailability test and a feeding bioassay.
To evaluate the effects of the juvenile hormone analogue pyriproxyfen on colonies of the Pharaoh ant Monomorium pharaonis (L.), peanut oil containing different concentrations (0.3, 0.6, or 0.9%) of pyriproxyfen was fed to monogynous (1 queen, 500 workers, and 0.1 g of brood) and polygynous (8 queens, 50 workers, and 0.1 g of brood) laboratory colonies of M. pharaonis. Due to its delayed activity, pyriproxyfen at all concentrations resulted in colony elimination. Significant reductions in brood volume were recorded at weeks 3 - 6, and complete brood mortality was observed at week 8 in all treated colonies. Brood mortality was attributed to the disruption of brood development and cessation of egg production by queens. All polygynous colonies exhibited significant reduction in the number of queens present at week 10 compared to week 1. Number of workers was significantly lower in all treated colonies compared to control colonies at week 8 due to old-age attrition of the workers without replacement. At least 98.67 ± 1.33% of workers were dead at week 10 in all treated colonies. Thus, treatment with slow acting pyriproxyfen at concentrations of 0.3 - 0.9% is an effective strategy for eliminating Pharaoh ant colonies.
Space spraying of chemical insecticides is still an important mean of controlling Aedes mosquitoes and dengue transmission. For this purpose, the bioefficacy of space-sprayed chemical insecticide should be evaluated from time to time. A simulation field trial was conducted outdoor in an open field and indoor in unoccupied flat units in Kuala Lumpur, to evaluate the adulticidal and larvicidal effects of Sumithion L-40, a ULV formulation of fenitrothion. A thermal fogger with a discharge rate of 240 ml/min was used to disperse Sumithion L-40 at 3 different dosages (350 ml/ha, 500 ml/ha, 750 ml/ha) against lab-bred larvae and adult female Aedes aegypti and Aedes albopictus. An average of more than 80% adult mortality was achieved for outdoor space spray, and 100% adult mortality for indoor space spray, in all tested dosages. Outdoor larvicidal effect was noted up to 14 days and 7 days at a dosage of 500 and 750 ml/ha for Ae. aegypti and Ae. albopictus, respectively. Indoor larvicidal effect was up to 21 days (500 ml/ha) and 14 days (750 ml/ha), respectively, after spraying with larval mortality > 50% against Ae. aegypti. This study concluded that the effective dosage of Sumithion L-40 thermally applied against adult Ae. aegypti and Ae. albopictus indoor and outdoor is 500 and 750 ml/ha. Based on these dosages, effective indoor spray volume is 0.4 - 0.6 ml/m³. Additional indoor and outdoor larvicidal effect will be observed at these application dosages, in addition to adult mortality.
The resistance status of riceland Culex vishnui against four major groups of insecticides (i.e., organochlorines, carbamates, organophosphates and pyrethroids) was investigated. Biochemical assays (ESTα, ESTβ, MFO and GST) were also conducted to detect the resistance levels. Throughout a 12-month study period, multiple insecticide resistance was observed in both larvae and adult Cx vishnui. Culex vishnui larvae exhibited low resistance against malathion, temephos and permethrin with resistance ratio (RR) values < 5. In adult bioassay, Cx. vishnui were highly resistant against all tested adulticides with 24h post-treatment mortality < 70%. Correlations between permethrin and malathion resistance, as well as between deltamethrin and cyfluthrin resistance were found in Cx. vishnui. The results indicated that mixed function oxidases activity of Cx. vishnui was the highest compared to ESTα, ESTβ and GST. Spearman rank-order analysis showed that ESTα, ESTβ and GST were involved in multiple resistances in Cx. vishnui. The findings of this study established a baseline of insecticide susceptibility and revealed the effects of agricultural insecticide pressure on the vectors of Japanese encephalitis in Malaysia.
Routine surveillance on resistant status of field mosquito populations is important to implement suitable strategies in order to prevent pest outbreaks. WHO test kit bioassay is the most frequent bioassay used to investigate the susceptibility status of field-collected mosquitoes, as it is relatively convenient to be carried out in the field. In contrast, the topical application of active ingredient is less popular in investigating the susceptibility status of mosquitoes. In this study, we accessed the susceptibility status of Aedes albopictus Skuse collected from two dengue hotspots on Penang Island: Sungai Dua and Persiaran Mayang Pasir. Two active ingredients: permethrin and deltamethrin, were used. WHO test kit bioassay showed that both wild strains collected were susceptible to the two active ingredients; while topical application assay showed that they were resistant. This indicated that WHO test kit bioassay less sensitive to low level of resistance compared to topical application assay. Hence, topical application is expected to be more indicative when used in a resistance surveillance programme.
House flies were collected from April 2007-April 2008 from two poultry farms (Balik Pulau and Juru) in the state of Penang. The resistance level of the first generation offspring was evaluated against DDT, malathion, propoxur, and permethrin using the topical application method. The resistance ratio (RR) of the Balik Pulau strain house flies for propoxur, malathion and DDT ranged from 10.28 to 99.00, 7.83 to 47.01 and 6.05 to 31.10, respectively. Resistance to propoxur and malathion in house fly was attributed to cross resistance to organophosphate insecticides used in the farm. Increased metabolic detoxification might be the mechanism involved in DDT resistance due to excessive application of cypermethrin formulation. The RR of the Juru strain for propoxur, malathion and DDT was in a decreasing pattern throughout the study period, ranging from 5.58 to 83.38, 15.19 to 27.82, and 10.04 to 22.69, respectively. Permethrin appeared to be the most potent insecticide in controlling house fly in both the Balik Pulau (RR=0.50 to 1.96) and Juru poultry farms (RR=0.64 to 2.40). The fluctuations of insecticides resistance in house fly was also found to correlate with climatic factors due to its rapid breeding. Relative humidity exhibited positive correlation indices with the changes in the resistance level for DDT (r=0.481, p<0.05), malathion (r=0.698, p<0.01), and permethrin (r=0.580, p<0.05) in Balik Pulau. Similarly, relative humidity in Juru also showed strong correlation with the RR for DDT (r=0.900, p<0.01), malathion (r=0.762, p<0.05), permethrin (r=0.760, p<0.05), and propoxur (r=0.897, p<0.01).
Studies were carried out on the residual efficacy of Bacillus thuringiensis H-14 (water dispersible granule, VectoBac ABG 6511) as direct application in the control of Aedes larvae in the field. Field Aedes sp populations in the earthen and glass jars were predetermined before initiation of the trial. On confirmation of the presence of Aedes species in the designated area, Sungai Nibong Kecil, Penang Island, Malaysia, Bti was introduced in the 55L earthen and 3L glass jars). Two test designs were carried out. The first design had treated water replenished daily with 6L of seasoned water and the second design is without the replenishment of water but evaporated water was replenished. Bti was effective in the field for at least 35 days with more than 80% reduction in the Aedes larvae in the treated containers. For earthen jars with daily replenishment of water, 100% reduction was recorded for the first 3 days, while more than 80% reduction was recorded up to day 40. At day 60, Bti still provided an efficacy of 54.32 +/- 4.61 (%) of reduction. Whilst for earthen jars without daily replenishment of water, 100% reduction was recorded for the first 5 days, while more than 80% of reduction was recorded up to day 40. For the glass jars studied, similar efficacy was observed. In jars with daily replenishment of water a better larval control was observed. Percentage of reduction from day 50 to 60 for replenishment of water was between 50 to 70% compared to without replenishment of water with less than 40%.
Laboratory efficacy and residual activity of a water dispersible granule formulation of Bacillus thuringiensis israelensis (Bti) at the dosages of 3000, 6000 and 15000 ITU/L were conducted in this study. The study was conducted in two different size containers, earthen jar (45 L) and glass jar (3 L) with or without daily replenishment of 6 L and 0.3 L of water in the earthen and glass jars, respectively. Results indicate that for both earthen jar and glass jar evaluations, Bti at the tested dosages, performed effectively against Aedes aegypti, giving a minimum of 42 days effective killing activity. When the dosage was increased from 3000 ITU/L to 6000 ITU/L or 15000 ITU/L, the effective periods of the Bti increased by an additional one to three weeks. The Bti water dispersible granule provided better larvicidal activity with replenishment of water compared with non-replenishment of water especially for the higher dosage (15000 ITU/L).
The author summarizes the information given by 13 governments-Afghanistan, Burma, Ceylon, China, India, Indonesia, Malaya, Netherlands New Guinea, Philippines, Portuguese India, Sarawak, Thailand, and Viet Nam-on their existing and proposed malaria-control programmes in response to a questionnaire prepared by WHO for discussion at the First Asian Malaria Conference, which was held in Bangkok in September 1953.Although in late 1953 nearly 46.5 million of the 271 million people living in malarious regions were protected against the disease, more than 224 million others were still unprotected.It is noted that residual-insecticide spraying-the basis of most campaigns-has significantly reduced spleen- and parasite-rates; that the minor opposition to spraying initially encountered in some places quickly disappeared as the benefits became apparent; that malaria control has resulted in general improvements in public health and has promoted socio-economic development; that anopheline resistance to the insecticides used has not been observed; that ten governments voiced the need for indoctrination of public officials concerning malaria control; and that there is a trend among governments to make financial provision for long-term malaria-control schemes.
The resistant level of the houseflies to six kinds of insecticides, DDT, Resmethrin, DDVP, Baytex, Sumithion and Diazinon, was examined on the seven strains collected in Malaysia. It was found that their susceptibility is rather higher than that of the Takatsuki strain which is a standard strain in Japan. However, their susceptibility to Sumithion was the same or slightly lower than that of the Takatsuki strain. The resistant level to five of six kinds of insecticides was the highest in the strain of Cameron Highland. The values were close to Singh's data in 1973, and this means that the resistance of the houseflies to the insecticides is increasing in Malaysia.
The bioefficacy of commercial mosquito coils containing four different active ingredients, namely metofluthrin, d-allethrin, d-trans allethrin, and prallethrin against Aedes albopictus (Skuse) (Diptera: Culicidae) from 10 states in Malaysia, was evaluated using the glass chamber method. In this study, Ae. albopictus exhibited various knockdown rates (50% knockdown time, KT50), ranging from 2.50 to 5.00 min, 2.50 to 7.00 min, 3.00 to 8.00 min, and 5.00 to 17.00 min for metofluthrin, d-trans allethrin, d-allethrin, and prallethrin, respectively. Overall, all strains of Ae. albopictus were most susceptible to metofluthrin, with mortality rates >80%. On the other hand, mortality rates ranging from 5.0 to 100% were observed from all populations exposed to d-trans allethrin, d-allethrin, and prallethrin. In addition, significant correlations between KT50 of metofluthrin and d-allethrin (r = 0.758, P = 0.011), metofluthrin and prallethrin (r = 0.676, P = 0.032), d-allethrin and d-trans allethrin (r = 0.832, P = 0.003), d-allethrin and prallethrin (r = 0.921, P = 0.000), and d-trans allethrin with prallethrin (r = 0.941, P = 0.000) were detected, suggesting some levels of cross-resistance within the pyrethroid insecticides. This study demonstrated that metofluthrin can induce high insecticidal activity in Ae. albopictus in Malaysia, followed by d-trans allethrin, d-allethrin, and prallethrin.
Resistance to pyrethroid insecticides is widespread in Indonesian Aedes aegypti (Linnaeus), the primary vector of dengue viruses. This study aims to investigate the mutations in the voltage-gated sodium channel (Vgsc) conferring pyrethroid resistance against Ae. aegypti populations from Indonesia. Molecular genotyping of mutations using polymerase chain reaction assay and direct DNA sequencing were performed at positions 989 and 1,016 in IIS6 region, and 1,534 in IIIS6 region of the voltage-gated sodium channel (Vgsc) in nine populations of Indonesian Ae. aegypti. The V1016G and S989P genotyping identified the RR genotype to be predominant in six out of nine populations of Ae. aegypti, whereas the SS genotype occurred only in minority. Interestingly, co-occurrence of the V1016G and S989P mutations was detected in the aforementioned six populations with high frequency. Genotyping of F1534C showed all nine populations exhibited the SS genotype, with merely two individuals from a population were heterozygous (RS). Significant correlations were demonstrated between the allele frequencies of the V1016G mutation and the survivability rates as well as resistance ratios in pyrethroid adult bioassays. This signifies the V1016G can contribute more to the insensitivity of Vgsc than the F1534C. Homozygous 1016G mosquitoes were likelier to survive pyrethroid exposure. Identification of underlying mechanisms resulting in insecticide resistance is advantageous in developing effective mosquito control programs in Indonesia.
Budding and relocation of nests are important characteristics of the Pharaoh ant, Monomorium pharaonis (L.), an important pest of artificial structures. Pharaoh ant colony movements induced by several types of disturbances were evaluated in the laboratory. The percentages of workers and brood in the source and new nest sites were determined at Days 0, 1, 3, and 5 following physical disturbance (temporal removal of nestmates), chemical disturbance (application of pyrethroid insecticide), invasion by heterospecific ants, food depletion, and moisture depletion in the laboratory. All disturbances were performed in the source nest, which was connected to an empty new nest site. Almost all workers moved and carried the entire brood to the new nest site when subjected to physical disturbance, chemical disturbance, and ant invasion on Day 1, whereas only <5% of workers were present in the new nest site in the undisturbed control. After these disturbances, the brood was never relocated back to the original nest site in this 5-d study. When subjected to food depletion, ∼60% of the brood were found in the new nest site and ∼40% of the brood remained in the original nest on Day 5, resulting in a polydomous population. In contrast, moisture depletion did not show any significant effect on colony movement. These results provide useful information about the causes of Pharaoh ant colony budding and guidance about how to develop effective control and prevention strategies.