Displaying publications 81 - 98 of 98 in total

Abstract:
Sort:
  1. Basiri A, Abd Razik BM, Ezzat MO, Kia Y, Kumar RS, Almansour AI, et al.
    Bioorg Chem, 2017 12;75:210-216.
    PMID: 28987876 DOI: 10.1016/j.bioorg.2017.09.019
    Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, which affected 35 million people in the world. The most practiced approach to improve the life expectancy of AD patients is to increase acetylcholine neurotransmitter level at cholinergic synapses by inhibition of cholinesterase enzymes. A series of unreported piperidone grafted spiropyrrolidines 8(a-p) were synthesized and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Therein, compounds 8h and 8l displayed more potent AChE enzyme inhibition than standard drug with IC50 values of 1.88 and 1.37 µM, respectively. Molecular docking simulations for 8l possessing the most potent AChE inhibitory activities, disclosed its interesting binding templates to the active site channel of AChE enzymes. These compounds are remarkable AChE inhibitors and have potential as AD drugs.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  2. Abbasi MA, Anwar A, Rehman A, Siddiqui SZ, Rubab K, Shah SAA, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1715-1724.
    PMID: 29084694
    Heterocyclic molecules have been frequently investigated to possess various biological activities during the last few decades. The present work elaborates the synthesis and enzymatic inhibition potentials of a series of sulfonamides. A series of 1-arylsulfonyl-4-Phenylpiperazine (3a-n) geared up by the reaction of 1-phenylpiperazine (1) and different (un)substituted alkyl/arylsulfonyl chlorides (2a-n), under defined pH control using water as a reaction medium. The synthesized molecules were characterized by 1H-NMR, 13C-NMR, IR and EI-MS spectral data. The enzyme inhibition study was carried on α-glucosidase, lipoxygenase (LOX), acetyl cholinesterase (AChE) and butyryl cholinesterase (BChE) enzymes supported by docking simulation studies and the IC50 values rendered a few of the synthesized molecules as moderate inhibitors of these enzymes where, the compound 3e exhibited comparatively better potency against α-glucosidase enzyme. The synthesized compounds showed weak or no inhibition against LOX, AChE and BChE enzymes.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  3. Hematpoor A, Liew SY, Azirun MS, Awang K
    Sci Rep, 2017 10 03;7(1):12576.
    PMID: 28974710 DOI: 10.1038/s41598-017-12898-z
    Hexane, dichloromethane and methanol extracts of the roots of Piper sarmentosum Roxb. were screened for toxicity towards Sitophilus oryzae (L.), Rhyzopertha dominica (F.), and Plodia interpunctella (Hübner) and the hexane extract exhibited the highest mortality percentage. Bioassay-guided fractionation of the hexane extract resulted in the isolation of asaricin 1, isoasarone 2, and trans-asarone 3. Asaricin 1 and isoasarone 2 were the most toxic compounds to Sitophilus oryzae, Rhyzopertha dominica, and Plodia interpunctella. Sitophilus oryzae and Rhyzopertha dominica exposed to asaricin 1 and isoasarone 2 required the lowest median lethal time. Insecticidal activity of trans-asarone 3 showed consistent toxicity throughout the 60 days towards all three insects as compared to asaricin 1 and isoasarone 2. Asaricin 1 and isoasarone 2 at different doses significantly reduced oviposition and adult emergence of the three insects in treated rice. Trans-asarone 3 had lowest toxicity with highest LC and LT values in all tested insects relative to its mild oviposition inhibition and progeny activity. Moreover, asaricin 1 and isoasarone 2 significantly inhibited acetylcholinesterase in comparison with trans-asarone 3 and the control. Acetylcholinesterase inhibition of Rhyzopertha dominica and Plodia interpunctella by asaricin 1 and isoasarone 2 were lower than that of Sitophilus oryzae, which correlated with their higher resistance.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  4. Sukumaran SD, Chee CF, Viswanathan G, Buckle MJ, Othman R, Abd Rahman N, et al.
    Molecules, 2016 Jul 22;21(7).
    PMID: 27455222 DOI: 10.3390/molecules21070955
    A series of 2'-hydroxy- and 2'-hydroxy-4',6'-dimethoxychalcones was synthesised and evaluated as inhibitors of human acetylcholinesterase (AChE). The majority of the compounds were found to show some activity, with the most active compounds having IC50 values of 40-85 µM. Higher activities were generally observed for compounds with methoxy substituents in the A ring and halogen substituents in the B ring. Kinetic studies on the most active compounds showed that they act as mixed-type inhibitors, in agreement with the results of molecular modelling studies, which suggested that they interact with residues in the peripheral anionic site and the gorge region of AChE.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  5. Gurjar AS, Darekar MN, Yeong KY, Ooi L
    Bioorg Med Chem, 2018 05 01;26(8):1511-1522.
    PMID: 29429576 DOI: 10.1016/j.bmc.2018.01.029
    Alzheimer's disease (AD) is a progressive neurodegenerative disorder with multiple factors associated with its pathogenesis. Our strategy against AD involves design of multi-targeted 2-substituted-4,5-diphenyl-1H-imidazole analogues which can interact and inhibit AChE, thereby, increasing the synaptic availability of ACh, inhibit BuChE, relieve induced oxidative stress and confer a neuroprotective role. Molecular docking was employed to study interactions within the AChE active site. In silico ADME study was performed to estimate pharmacokinetic parameters. Based on computational studies, some analogues were synthesized and subjected to pharmacological evaluation involving antioxidant activity, toxicity and memory model studies in animals followed by detailed mechanistic in vitro cholinesterase inhibition study. Amongst the series, analogue 13 and 20 are the most promising multi-targeted candidates which can potentially increase memory, decrease free radical levels and protect neurons against cognitive deficit.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  6. Ali Hassan SH, Fry JR, Abu Bakar MF
    Biomed Res Int, 2013;2013:138950.
    PMID: 24288662 DOI: 10.1155/2013/138950
    Garcinia parvifolia belongs to the same family as mangosteen (Garcinia mangostana), which is known locally in Sabah as "asam kandis" or cherry mangosteen. The present study was conducted to determine the phytochemicals content (total phenolic, flavonoid, anthocyanin, and carotenoid content) and antioxidant and acetylcholinesterase inhibition activity of the flesh and peel of G. parvifolia. All samples were freeze-dried and extracted using 80% methanol and distilled water. For the 80% methanol extract, the flesh of G. parvifolia displayed higher phenolic and flavonoid contents than the peel, with values of 7.2 ± 0.3 mg gallic acid equivalent (GAE)/g and 5.9 ± 0.1 mg rutin equivalent (RU)/g, respectively. Anthocyanins were detected in the peel part of G. parvifolia but absent in the flesh. The peel of G. parvifolia displayed higher total carotenoid content as compared to the flesh part with the values of 17.0 ± 0.3 and 3.0 ± 0.0 mg β-carotene equivalents (BC)/100 g, respectively. The free-radical scavenging, ferric reducing, and acetylcholinesterase inhibition effect of the flesh were higher as compared to the peel in both extracts. These findings suggested that the edible part of G. parvifolia fruit has a potential as a natural source of antioxidant and anti-Alzheimer's agents.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  7. Nasir MN, Abdullah J, Habsah M, Ghani RI, Rammes G
    Phytomedicine, 2012 Feb 15;19(3-4):311-6.
    PMID: 22112723 DOI: 10.1016/j.phymed.2011.10.004
    The asiatic acid, a triterpenoids isolated from Centella asiatica was used to delineate its inhibitory effect on acetylcholinesterase (AChE) properties, excitatory post synaptic potential (EPSP) and locomotor activity. This study is consistent with asiatic acid having an effect on AChE, a selective GABA(B) receptor agonist and no sedative effect on locomotor.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  8. Mani V, Parle M, Ramasamy K, Abdul Majeed AB
    J Sci Food Agric, 2011 Jan 15;91(1):186-92.
    PMID: 20848667 DOI: 10.1002/jsfa.4171
    Coriandrum sativum L., commonly known as coriander and belonging to the family Apiaceae (Umbelliferae), is cultivated throughout the world for its nutritional value. The present study was undertaken to investigate the effects of fresh Coriandrum sativum leaves (CSL) on cognitive functions, total serum cholesterol levels and brain cholinesterase activity in mice. In this study, CSL (5, 10 and 15% w/w of diet) was fed orally with a specially prepared diet for 45 days consecutively to experimental animals. Elevated plus-maze and passive avoidance apparatus served as the exteroceptive behavioral models for testing memory. Diazepam, scopolamine and ageing-induced amnesia served as the interoceptive behavioral models.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  9. Muhammad A, Tel-Çayan G, Öztürk M, Duru ME, Nadeem S, Anis I, et al.
    Pharm Biol, 2016 Sep;54(9):1649-55.
    PMID: 26866457 DOI: 10.3109/13880209.2015.1113992
    Context Dodonaea viscosa (L.) Jacq (Sapindaceae) has been used in traditional medicine as antimalarial, antidiabetic and antibacterial agent, but further investigations are needed. Objective This study determines the antioxidant and anticholinesterase activities of six compounds (1-6) and two crystals (1A and 3A) isolated from D. viscosa, and discusses their structure-activity relationships. Materials and methods Antioxidant activity was evaluated using six complementary tests, i.e., β-carotene-linoleic acid; DPPH(•), ABTS(•+), superoxide scavenging, CUPRAC and metal chelating assays. Anticholinesterase activity was performed using the Elman method. Results Clerodane diterpenoids (1 and 2) and phenolics (3-6) - together with three crystals (1A, 3A and 7A) - were isolated from the aerial parts of D. viscosa. Compound 3A exhibited good antioxidant activity in DPPH (IC50: 27.44 ± 1.06 μM), superoxide (28.18 ± 1.35% inhibition at 100 μM) and CUPRAC (A0.5: 35.89 ± 0.09 μM) assays. Compound 5 (IC50: 11.02 ± 0.02 μM) indicated best activity in ABTS assay, and 6 (IC50: 14.30 ± 0.18 μM) in β-carotene-linoleic acid assay. Compounds 1 and 3 were also obtained in the crystal (1A and 3A) form. Both crystals showed antioxidant activity. Furthermore, crystal 3A was more active than 3 in all activity tests. Phenol 6 possessed moderate anticholinesterase activity against acetylcholinesterase and butyrylcholinesterase enzymes (IC50 values: 158.14 ± 1.65 and 111.60 ± 1.28 μM, respectively). Discussion and conclusion This is the first report on antioxidant and anticholinesterase activities of compounds 1, 2, 5, 6, 1A and 3A, and characterisation of 7A using XRD. Furthermore, the structure-activity relationships are also discussed in detail for the first time.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  10. Ishaq M, Taslimi P, Shafiq Z, Khan S, Ekhteiari Salmas R, Zangeneh MM, et al.
    Bioorg Chem, 2020 07;100:103924.
    PMID: 32442818 DOI: 10.1016/j.bioorg.2020.103924
    In recent decade, the entrance of α-N-heterocyclic thiosemicarbazones derivates (Triapne, COTI-2 and DpC) in clinical trials for cancer and HIV-1 has vastly increased the interests of medicinal chemists towards this class of organic compounds. In the given study, a series of eighteen new (3a-r) 3-ethoxy salicylaldehyde-based thiosemicarbazones (TSC), bearing aryl and cycloalkyl substituents, were synthesized and assayed for their pharmacological potential against carbonic anhydrases (hCA I and hCA II), cholinesterases (AChE and BChE) and α-glycosidase. The hCA I isoform was inhibited by these novel 3-ethoxysalicylaldehyde thiosemicarbazone derivatives (3a-r) in low nanomolar levels, the Ki of which differed between 144.18 ± 26.74 and 454.92 ± 48.32 nM. Against the physiologically dominant isoform hCA II, the novel compounds demonstrated Kis varying from 110.54 ± 14.05 to 444.12 ± 36.08 nM. Also, these novel derivatives (3a-r) effectively inhibited AChE, with Ki values in the range of 385.38 ± 45.03 to 983.04 ± 104.64 nM. For BChE was obtained with Ki values in the range of 400.21 ± 35.68 to 1003.02 ± 154.27 nM. For α-glycosidase the most effective Ki values of 3l, 3n, and 3q were with Ki values of 12.85 ± 1.05, 16.03 ± 2.84, and 19.16 ± 2.66 nM, respectively. Moreover, the synthesized TCSs were simulated using force field methods whereas the binding energies of the selected compounds were estimated using MM-GBSA method. The findings indicate the present novel 3-ethoxy salicylaldehyde-based thiosemicarbazones to be excellent hits for pharmaceutical applications.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  11. Ashraf Ali M, Ismail R, Choon TS, Kumar RS, Osman H, Arumugam N, et al.
    Bioorg Med Chem Lett, 2012 Jan 1;22(1):508-11.
    PMID: 22142546 DOI: 10.1016/j.bmcl.2011.10.087
    Pyrrolothiazolyloxindole analogues share vital pharmacological properties, considered useful in Alzheimer's disease (AD). The aim of this study was synthesis and evaluate pyralothiazolyloxindole analogues if possess acetyl cholinesterase (AChE) inhibitory activity. The easily accessible one-pot synthesis of these compounds resulted to be significantly less difficult and expensive than that of donepezil. Several compounds possess anti-cholinesterase activity in the order of micro and sub-micromolar. Particularly, compound was the most potent inhibitors of the series against acetyl cholinesterase enzyme with IC(50) 0.11μmol/L.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  12. Damodaran T, Cheah PS, Murugaiyah V, Hassan Z
    Neurochem Int, 2020 10;139:104785.
    PMID: 32650028 DOI: 10.1016/j.neuint.2020.104785
    BACKGROUND: Clitoria ternatea (CT) is an herbal plant that has been used as a memory booster in folk medicine. CT root extract has been proven to restore chronic cerebral hypoperfusion (CCH)-induced memory deficits in a rat model, but the underlying mechanisms and the toxicity profile following repeated exposure have yet to be explored.

    THE AIM OF THE STUDY: To investigate the effects of the chronic (28 days) oral administration of CT root extract on CCH-induced cognitive impairment, neuronal damage and cholinergic deficit, and its toxicity profile in the CCH rat model.

    MATERIALS AND METHODS: The permanent bilateral occlusion of common carotid arteries (PBOCCA) surgery method was employed to develop a CCH model in male Sprague Dawley (SD) rats. Then, these rats were given oral administration of CT root extract at doses of 100, 200, and 300 mg/kg, respectively for 28 days and subjected to behavioural tests. At the end of the experiment, the brain was harvested for histological analysis and cholinesterase activities. Then, blood samples were collected and organs such as liver, kidney, lung, heart, and spleen were procured for toxicity assessment.

    RESULTS: Chronic treatment of CT root extract at doses of 200 and 300 mg/kg, restored memory impairments induced by CCH. CT root extract was also found to diminish CCH-induced neuronal damage in the CA1 region of the hippocampus. High dose (300 mg/kg) of the CT root extract was significantly inhibited the increased acetylcholinesterase (AChE) activity in the frontal cortex and hippocampus of the PBOCCA rats. In toxicity study, repeated doses of CT root extract were found to be safe in PBOCCA rats after 28 days of treatment.

    CONCLUSIONS: Our findings provided scientific evidence supporting the therapeutic potential of CT root extract in the treatment of vascular dementia (VaD)-related cholinergic abnormalities and subsequent cognitive decline.

    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  13. Bharkavi C, Vivek Kumar S, Ashraf Ali M, Osman H, Muthusubramanian S, Perumal S
    Bioorg Med Chem, 2016 11 15;24(22):5873-5883.
    PMID: 27687968 DOI: 10.1016/j.bmc.2016.09.044
    A facile stereoselective synthesis of novel dispiro indeno pyrrolidine/pyrrolothiazole-thiochroman hybrids has been achieved by 1,3-dipolar cycloaddition of azomethine ylides, generated in situ from ninhydrin and sarcosine/thiaproline, on a series of 3-benzylidenethiochroman-4-ones. The synthesised compounds were screened for their antimycobacterial, anticancer and AchE inhibition activities. Compound 4l (IC50 1.07μM) has been found to exhibit the most potent antimycobacterial activity compared to cycloserine (12 times), pyrimethamine (37 times) and ethambutol (IC50 <1.56μM) and 6l (IC50=2.87μM) is more active than both cycloserine (4 times) and pyrimethamine (12 times). Three compounds, 4a, 6b and 6i, display good anticancer activity against CCRF-CEM cell lines. Compounds 6g and 4g display maximum AchE inhibitory activity with IC50 values of 1.10 and 1.16μmol/L respectively.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  14. Abed SA, Sirat HM, Taher M
    Pak J Pharm Sci, 2016 Nov;29(6):2071-2078.
    PMID: 28375126
    The leaves of Gynotroches axillaris were chemically and biologically studied. Sequential extraction of the leaves using petroleum ether, chloroform, and methanol afforded three extracts. Purification of pet. ether extract yielded, squalene and β-amyrin palmitate as the major compounds, together with palmitic acid and myristic acid as the minor components. The methanol extract yielded two flavonoids, quercitrin and epicatechin. The isolated compounds were characterized by MS, IR and NMR (1D and 2D). Anti-acetyl cholinesterase screening using TLC bio-autography assay showed that palmitic acid and myristic acid were the strongest inhibition with detection limit 1.14 and 1.28 μ/g/ 5 μL respectively. Antibacterial against Gram-positive and negative and antifungal activities exhibited that β-amyrin palmitate was the strongest (450-225 μ/mL) against all the tested microbes. The tyrosinase inhibition assay of extracts and the pure compounds were screened against tyrosinase enzyme. The inhibition percentage (I%) of methanol extract against tyrosinase enzyme was stronger than the other extracts with value 68.4%. Quercitrin (59%) was found to be the highest in the tyrosinase inhibition activity amongst the pure compounds. To the best of our knowledge, this is first report on the phytochemicals, tyrosinase inhibition, anti-acetycholinesterase and antimicrobial activities of the leaves of G. axillaris.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  15. Abbasi MA, Hassan M, Ur-Rehman A, Siddiqui SZ, Hussain G, Shah SAA, et al.
    Comput Biol Chem, 2018 Dec;77:72-86.
    PMID: 30245349 DOI: 10.1016/j.compbiolchem.2018.09.007
    The heterocyclic compounds have been extensively reported for their bioactivity potential. The current research work reports the synthesis of some new multi-functional derivatives of 2-furoic piperazide (1; 1-(2-furoyl)piperazine). The synthesis was initiated by reacting the starting compound 1 with 3,5-dichloro-2-hydroxybenzenesulfonyl chloride (2) in a basic, polar and protic medium to obtain the parent sulfonamide 3 which was then treated with different electrophiles, 4a-g, in a polar and aprotic medium to acquire the designed molecules, 5a-g. These convergent derivatives were evaluated for their inhibitory potential against α-glucosidase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Acarbose was used as a reference standard for α-glucosidase inhibition while eserine for AChE and BChE inhibition. Some of the synthesized compounds were identified as promising inhibitors of these three enzymes and their bioactivity potentials were also supported by molecular docking study. The most active compounds among the synthetic analogues might be helpful in drug discovery and development for the treatment of type 2 diabetes and Alzhiemer's diseases.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  16. Romero Rocamora C, Ramasamy K, Meng Lim S, Majeed ABA, Agatonovic-Kustrin S
    J Pharm Biomed Anal, 2020 Jan 30;178:112909.
    PMID: 31618702 DOI: 10.1016/j.jpba.2019.112909
    A high-performance thin-layer chromatography (HPTLC) method combined with effect-directed-analysis (EDA) was developed to screen the antioxidant, neuroprotective and antidiabetic effects in essential oils derived from lavender flower, lemon myrtle, oregano, peppermint, sage, and rosemary leaves (Lamiaceae family). HPTLC hyphenated with microchemical (DPPH•, p-anisaldehyde, and ferric chloride) derivatizations, was used to evaluate antioxidant activity, presence of phytosterols and terpenoids, and polyphenolic content, while the combination with biochemical (α-amylase and acetylcholine esterase (AChE) enzymatic) derivatizations was used to asses α-amylase and AChE inhibitory activities. The superior antioxidant activity of oregano leaf extract is attributed to the presence of high levels of aromatic compounds, like polyphenolic acids. The strongest α-amylase inhibition was observed in lemon myrtle and rosemary plus extracts due to the presence of monoterpenes. Rosemary and sage extracts exhibit the highest AChE inhibition activity, with 1 μL essential oils being more potent than the recommended daily dose of donepezil. This superior neuroprotection was attributed to the presences of di- and triterpenes that displayed strong AChE inhibition and antioxidant potential in DPPH• free radical assay. Antioxidant activity was related to phenolic content (R = 0.49), while α-amylase inhibitory activity was positively related to antioxidant activity (R = 0.20) and terpenoid/sterol content (R = 0.31). AChE inhibitory activity was correlated (R = 0.80) to the combined effect of phenolics and terpenoids. Thus, the superior AChE inhibitory and neuroprotection potential of rosemary and sage essential oils could be attributed to joint effects of main phenolic and terpene constituents. The hyphenated HPTLC method provided rapid bioanalytical profiling of highly complex essential oil samples.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  17. Agatonovic-Kustrin S, Kettle C, Morton DW
    Biomed Pharmacother, 2018 Oct;106:553-565.
    PMID: 29990843 DOI: 10.1016/j.biopha.2018.06.147
    An increase in dementia numbers and global trends in population aging across the world prompts the need for new medications to treat the complex biological dysfunctions, such as neurodegeneration associated with dementia. Alzheimer's disease (AD) is the most common form of dementia. Cholinergic signaling, which is important in cognition, is slowly lost in AD, so the first line therapy is to treat symptoms with acetylcholinesterase inhibitors to increase levels of acetylcholine. Out of five available FDA-approved AD medications, donepezil, galantamine and rivastigmine are cholinesterase inhibitors while memantine, a N-methyl d-aspartate (NMDA) receptor antagonist, blocks the effects of high glutamate levels. The fifth medication consists of a combination of donepezil and memantine. Although these medications can reduce and temporarily slow down the symptoms of AD, they cannot stop the damage to the brain from progressing. For a superior therapeutic effect, multi-target drugs are required. Thus, a Multi-Target-Directed Ligand (MTDL) strategy has received more attention by scientists who are attempting to develop hybrid molecules that simultaneously modulate multiple biological targets. This review highlights recent examples of the MTDL approach and fragment based strategy in the rational design of new potential AD medications.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  18. Janbaz KH, Arif J, Saqib F, Imran I, Ashraf M, Zia-Ul-Haq M, et al.
    BMC Complement Altern Med, 2014 Feb 22;14:71.
    PMID: 24559094 DOI: 10.1186/1472-6882-14-71
    BACKGROUND: Isodon rugosus is used in folk Pakistan traditional practices to cure ailments related to gastrointestinal, respiratory and cardiovascular problems. Present study was undertaken to validate these folkloric uses.

    METHODS: A crude methanol extract of the aerial parts of Isodon rugosus (Ir.Cr.) was used for both in vitro and in vivo experiments. The plant extract was tested on isolated rabbit jejunum preparations for possible presence of spasmolytic activity. Moreover, isolated rabbit tracheal and aorta preparations were used to ascertain the relaxant effects of the extract. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of Ir.Cr were also determined as well as its antioxidant activity. The in vivo antiemetic activity of the extract was evaluated by using the chick emesis model, while the analgesic and antipyretic activities were conducted on albino mice.

    RESULTS: The application of the crude extract of I. rugosus to isolated rabbit jejunum preparations exhibited relaxant effect (0.01-0.3 mg/ml). The Ir.Cr also relaxed K+(80 m M)-induced spastic contractions in isolated rabbit jejunum preparations and shifted the Ca+2 concentration response curves towards right (0.01-0.3 mg/ml). Similarly, the extract, when applied to the isolated rabbit tracheal preparations relaxed the carbachol (1 μM)--as well as K+ (80 mM)-induced contractions in a concentration range of 0.01-1.0 mg/ml. Moreover, it also relaxed (0.01-3.0 mg/ml) the phenylephrine (1 μM)- and K+ (80 mM)-induced contractions in isolated rabbit aorta preparations. The Ir.Cr (80 mg/kg) demonstrated antipyretic activity on pyrogen-induced pyrexia in rabbits as compared to aspirin as standard drug. The Ir.Cr also exhibited anti-oxidant as well as inhibitory effect on acetyl- and butyryl-cholinesterase and lipoxygenase (0.5 mg/ml).

    CONCLUSIONS: The observed relaxant effect on isolated rabbit jejunum, trachea and aorta preparations caused by Ir.Cr is possibly to be mediated through Ca+2 channel blockade and therefore may provided scientific basis to validate the folkloric uses of the plant in the management of gastrointestinal, respiratory and cardiovascular ailments. The observed antioxidant activity as well as the lipoxygenase inhibitory activity may validate its traditional use in pain and inflammations.

    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links