Displaying publications 81 - 100 of 154 in total

Abstract:
Sort:
  1. Abdul Aziz AA, Md Salleh MS, Mohamad I, Krishna Bhavaraju VM, Mazuwin Yahya M, Zakaria AD, et al.
    J Genet, 2018 Dec;97(5):1185-1194.
    PMID: 30555068
    Triple negative breast cancer (TNBC) is typically associated with poor and interindividual variability in treatment response. Cytochrome P450 family 1 subfamily B1 (CYP1B1) is a metabolizing enzyme, involved in the biotransformation of xenobiotics and anticancer drugs. We hypothesized that, single-nucleotide polymorphisms (SNPs), CYP1B1 142 C>G, 4326 C>G and 4360 A>G, and CYP1B1 mRNA expression might be potential biomarkers for prediction of treatment response in TNBC patients. CYP1B1 SNPs genotyping (76 TNBC patients) was performed using allele-specific polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism methods and mRNA expression of CYP1B1 (41 formalin-fixed paraffin embeddedblocks) was quantified using quantitative reverse transcription PCR. Homozygous variant genotype (GG) and variant allele (G) of CYP1B1 4326C>G polymorphism showed significantly higher risk for development of resistance to chemotherapy with adjusted odds ratio (OR): 6.802 and 3.010, respectively. Whereas, CYP1B1 142 CG heterozygous genotype showed significant association with goodtreatment response with adjusted OR: 0.199. CYP1B1 142C-4326G haplotype was associated with higher risk for chemoresistance with OR: 2.579. Expression analysis revealed that the relative expression of CYP1B1 was downregulated (0.592) in cancerous tissue compared with normal adjacent tissues. When analysed for association with chemotherapy response, CYP1B1 expression was found to be significantly upregulated (3.256) in cancerous tissues of patients who did not respond as opposed to those of patients who showed response to chemotherapy. Our findings suggest that SNPs together with mRNA expression of CYP1B1 may be useful biomarkers to predict chemotherapy response in TNBC patients.
    Matched MeSH terms: RNA, Messenger/genetics*
  2. da Silva MP, Merino RM, Mecawi AS, Moraes DJ, Varanda WA
    Mol Cell Endocrinol, 2015 Jan 15;400:102-11.
    PMID: 25451978 DOI: 10.1016/j.mce.2014.11.004
    The phenotypic differentiation between oxytocin (OT)- and vasopressin (VP)-secreting magnocellular neurosecretory cells (MNCs) from the supraoptic nucleus is relevant to understanding how several physiological and pharmacological challenges affect their electrical activity. Although the firing patterns of OT and VP neurons, both in vivo and in vitro, may appear different from each other, much is assumed about their characteristics. These assumptions make it practically impossible to obtain a confident phenotypic differentiation based exclusively on the firing patterns. The presence of a sustained outward rectifying potassium current (SOR) and/or an inward rectifying hyperpolarization-activated current (IR), which are presumably present in OT neurons and absent in VP neurons, has been used to distinguish between the two types of MNCs in the past. In this study, we aimed to analyze the accuracy of the phenotypic discrimination of MNCs based on the presence of rectifying currents using comparisons with the molecular phenotype of the cells, as determined by single-cell RT-qPCR and immunohistochemistry. Our results demonstrated that the phenotypes classified according to the electrophysiological protocol in brain slices do not match their molecular counterparts because vasopressinergic and intermediate neurons also exhibit both outward and inward rectifying currents. In addition, we also show that MNCs can change the relative proportion of each cell phenotype when the system is challenged by chronic hypertonicity (70% water restriction for 7 days). We conclude that for in vitro preparations, the combination of mRNA detection and immunohistochemistry seems to be preferable when trying to characterize a single MNC phenotype.
    Matched MeSH terms: RNA, Messenger/genetics
  3. Jamar NH, Kritsiligkou P, Grant CM
    Sci Rep, 2018 03 01;8(1):3894.
    PMID: 29497115 DOI: 10.1038/s41598-018-22183-2
    Eukaryotic cells contain translation-associated mRNA surveillance pathways which prevent the production of potentially toxic proteins from aberrant mRNA translation events. We found that loss of mRNA surveillance pathways in mutants deficient in nonsense-mediated decay (NMD), no-go decay (NGD) and nonstop decay (NSD) results in increased protein aggregation. We have isolated and identified the proteins that aggregate and our bioinformatic analyses indicates that increased aggregation of aggregation-prone proteins is a general occurrence in mRNA surveillance mutants, rather than being attributable to specific pathways. The proteins that aggregate in mRNA surveillance mutants tend to be more highly expressed, more abundant and more stable proteins compared with the wider proteome. There is also a strong correlation with the proteins that aggregate in response to nascent protein misfolding and an enrichment for proteins that are substrates of ribosome-associated Hsp70 chaperones, consistent with susceptibility for aggregation primarily occurring during translation/folding. We also identified a significant overlap between the aggregated proteins in mRNA surveillance mutants and ageing yeast cells suggesting that translation-dependent protein aggregation may be a feature of the loss of proteostasis that occurs in aged cell populations.
    Matched MeSH terms: RNA, Messenger/genetics
  4. Abubakar SA, Isa MM, Omar N, Tan SW
    Mol Med Rep, 2020 Dec;22(6):4931-4937.
    PMID: 33174018 DOI: 10.3892/mmr.2020.11560
    The human ocular surface produces highly conserved cationic peptides. Human β‑defensins (HBDs) serve an important role in innate and adaptive immunity. They are primarily expressed in epithelial cells in response to infection and provide the first line of defence against invading microbes. Defensin β1 (DEFB1) is constitutively expressed and regulated by inflammatory mediators including interferon‑γ, lipopolysaccharide and peptidoglycans. DEFB4A is locally induced in response to microbial infection while DEFB109 is induced via Toll‑like receptor 2. The present study examined the expression of the HBD DEFB1, DEFB4A and DEFB109 genes in pterygium. The pterygium tissues and normal conjunctiva samples were obtained from 18 patients undergoing pterygium surgery. The reverse transcription‑quantitative polymerase chain reaction method was employed to determine the expression of DEFB1, DEFB4A and DEFB109 genes. The results revealed that the expression of DEFB1 and DEFB4A was significantly higher and upregulated in pterygium samples when compared with normal conjunctiva samples from each patient (P<0.05), while the expression of DEFB109 was observed to be lower in pterygium samples when compared with normal samples from the same patient. Previous studies have revealed that DEFB1 and DEFB4A genes are present in low concentrations inside the human eye, and they are upregulated during the maturation of keratinocytes, suggesting a possible role in cell differentiation. The DEFB109 gene is present in higher concentrations inside the human eye, though it is newly discovered. It has also been reported that DEFB1 may be involved in carcinogenesis epithelial tumours. Collectively, the current data suggests that HBDs may serve a crucial role in the pathogenesis and development of pterygia, and thus may be considered as novel molecular targets in understanding pterygia development.
    Matched MeSH terms: RNA, Messenger/genetics
  5. Hagen RM, Adamo P, Karamat S, Oxley J, Aning JJ, Gillatt D, et al.
    Am J Clin Pathol, 2014 Oct;142(4):533-40.
    PMID: 25239421 DOI: 10.1309/AJCPH88QHXARISUP
    The proto-oncogene ETS-related gene (ERG) is consistently overexpressed in prostate cancer. Alternatively spliced isoforms of ERG have variable biological activities; inclusion of exon 11 (72 base pairs [bp]) is associated with aggressiveness and progression of disease. Exon 10 (81 bp) has also been shown to be alternatively spliced. Within this study, we assess whether ERG protein, messenger RNA (mRNA), and ERG splice isoform mRNA expression is altered as prostate cancer progresses.
    Matched MeSH terms: RNA, Messenger/genetics
  6. Tan JK, Tan EL, Gan SY
    Exp Oncol, 2014 Sep;36(3):170-3.
    PMID: 25265349
    Deregulation of microRNA has been associated with cancer progression and the modification of cancer phenotypes could be achieved by targeting microRNA expression. This study aimed to determine the effects of miR-372 on cell progression and gene expression in nasopharyngeal carcinoma cell line, TW01.
    Matched MeSH terms: RNA, Messenger/genetics
  7. Chinigarzadeh A, Muniandy S, Salleh N
    Steroids, 2016 11;115:47-55.
    PMID: 27521800 DOI: 10.1016/j.steroids.2016.08.007
    In this study, effects of estradiol, progesterone and genistein on uterine aquaporin (AQP)-1, 2, 5 and 7 expression were investigated in sex-steroid deficient state which could help to elucidate the mechanisms underlying uterine fluid volume changes that were reported under these hormone and hormone-like compound influences.

    METHODS: Uteri from ovariectomized, female Sprague-Dawley rats receiving seven days estradiol, progesterone or genistein (25, 50 and 100mg/kg/day) were harvested and levels of AQP-1, 2, 5 and 7 proteins and mRNAs were determined by Western blotting and Real-time PCR (qPCR) respectively. Distribution of these proteins in uterus was observed by immunohistochemistry.

    RESULTS: Genistein caused a dose-dependent increase in uterine AQP-1, 2, 5 and 7 protein and mRNA expression, however at the levels lower than following estradiol or progesterone stimulations. Effects of genistein were antagonized by estradiol receptor blocker, ICI 182780. Estradiol caused the highest AQP-2 protein and mRNA expression while progesterone caused the highest AQP-1, 5 and 7 protein and mRNA expression in uterus. AQP-1, 2, 5 and 7 protein were found to be distributed in the myometrium as well as in uterine luminal and glandular epithelia and endometrial blood vessels. In conclusion, the observed effects of estradiol, progesterone and genistein on uterine AQP-1, 2, 5 and 7 expression could help to explain the differences in the amount of fluid accumulated in the uterus under these different conditions.

    Matched MeSH terms: RNA, Messenger/genetics
  8. Waiho K, Fazhan H, Shahreza MS, Moh JH, Noorbaiduri S, Wong LL, et al.
    PLoS One, 2017;12(1):e0171095.
    PMID: 28135340 DOI: 10.1371/journal.pone.0171095
    Adequate genetic information is essential for sustainable crustacean fisheries and aquaculture management. The commercially important orange mud crab, Scylla olivacea, is prevalent in Southeast Asia region and is highly sought after. Although it is a suitable aquaculture candidate, full domestication of this species is hampered by the lack of knowledge about the sexual maturation process and the molecular mechanisms behind it, especially in males. To date, data on its whole genome is yet to be reported for S. olivacea. The available transcriptome data published previously on this species focus primarily on females and the role of central nervous system in reproductive development. De novo transcriptome sequencing for the testes of S. olivacea from immature, maturing and mature stages were performed. A total of approximately 144 million high-quality reads were generated and de novo assembled into 160,569 transcripts with a total length of 142.2 Mb. Approximately 15-23% of the total assembled transcripts were annotated when compared to public protein sequence databases (i.e. UniProt database, Interpro database, Pfam database and Drosophila melanogaster protein database), and GO-categorised with GO Ontology terms. A total of 156,181 high-quality Single-Nucleotide Polymorphisms (SNPs) were mined from the transcriptome data of present study. Transcriptome comparison among the testes of different maturation stages revealed one gene (beta crystallin like gene) with the most significant differential expression-up-regulated in immature stage and down-regulated in maturing and mature stages. This was further validated by qRT-PCR. In conclusion, a comprehensive transcriptome of the testis of orange mud crabs from different maturation stages were obtained. This report provides an invaluable resource for enhancing our understanding of this species' genome structure and biology, as expressed and controlled by their gonads.
    Matched MeSH terms: RNA, Messenger/genetics
  9. Mohamad M, Wahab NA, Yunus R, Murad NA, Zainuddin ZM, Sundaram M, et al.
    Asian Pac J Cancer Prev, 2016;17(7):3437-45.
    PMID: 27509989
    BACKGROUND: There is an increasing concern in the role of microRNA (miRNA) in the pathogenesis of bone metastasis (BM) secondary to prostate cancer (CaP). In this exploratory study, we hypothesized that the expression of vinculin (VCL) and chemokine X3C ligand 1 (CX3CL1) might be downregulated in clinical samples, most likely due to the posttranscriptional modification by microRNAs. Targeted genes would be upregulated upon transfection of the bone metastatic prostate cancer cell line, PC3, with specific microRNA inhibitors.

    MATERIALS AND METHODS: MicroRNA software predicted that miR21 targets VCL while miR29a targets CX3CL1. Twenty benign prostatic hyperplasia (BPH) and 16 high grade CaP formalinfixed paraffin embedded (FFPE) specimens were analysed. From the bone scan results, high grade CaP samples were further classified into CaP with no BM and CaP with BM. Transient transfection with respective microRNA inhibitors was done in both RWPE1 (normal) and PC3 cell lines. QPCR was performed in all FFPE samples and transfected cell lines to measure VCL and CX3CL1 levels.

    RESULTS: QPCR confirmed that VCL messenger RNA (mRNA) was significantly down regulated while CX3CL1 was upregulated in all FFPE specimens. Transient transfection with microRNA inhibitors in PC3 cells followed by qPCR of the targeted genes showed that VCL mRNA was significantly up regulated while CX3CL1 mRNA was significantly downregulated compared to the RWPE1 case.

    CONCLUSIONS: The downregulation of VCL in FFPE specimens is most likely regulated by miR21 based on the in vitro evidence but the exact mechanism of how miR21 can regulate VCL is unclear. Upregulated in CaP, CX3CL1 was found not regulated by miR29a. More microRNA screening is required to understand the regulation of this chemokine in CaP with bone metastasis. Understanding miRNAmRNA interactions may provide additional knowledge for individualized study of cancers.

    Matched MeSH terms: RNA, Messenger/genetics
  10. Gan SY, Wong LZ, Wong JW, Tan EL
    Int J Biol Macromol, 2019 Jan;121:207-213.
    PMID: 30300695 DOI: 10.1016/j.ijbiomac.2018.10.021
    Alzheimer's disease (AD) is a neurodegenerative disease that leads to progressive loss of neurons which often results in deterioration of memory and cognitive function. The development of AD is highly associated with the formation of senile plaques and neurofibrillary tangles. Amyloid β (Aβ) induces neurotoxicity and contributes to the development of AD. Recent evidences also highlighted the importance of neuroglobin (Ngb) in ameliorating AD. This study assessed the ability of fucosterol, a phytosterol found in brown alga, in protecting SH-SY5Y cells against Aβ-induced neurotoxicity. Its effects on the mRNA levels of APP and Ngb as well as the intracellular Aβ levels were also determined in Aβ-induced SH-SY5Y cells. SH-SY5Y cells were exposed to fucosterol prior to Aβ treatment. The effect on apoptosis was determined using Annexin V FITC staining and mRNA expression was studied using RT-PCR. Flow cytometry confirmed the protective effects of fucosterol on SH-SY5Y cells against Aβ-induced apoptosis. Pretreatment with fucosterol increased the Ngb mRNA levels but reduced the levels of APP mRNA and intracellular Aβ in Aβ-induced SH-SY5Y cells. These observations demonstrated the protective properties of fucosterol against Aβ-induced neurotoxicity in neuronal cells.
    Matched MeSH terms: RNA, Messenger/genetics
  11. Abu Bakar MH, Azmi MN, Shariff KA, Tan JS
    Appl Biochem Biotechnol, 2019 May;188(1):241-259.
    PMID: 30417321 DOI: 10.1007/s12010-018-2920-2
    Withaferin A (WA), a bioactive constituent derived from Withania somnifera plant, has been shown to exhibit many qualifying properties in attenuating several metabolic diseases. The current investigation sought to elucidate the protective mechanisms of WA (1.25 mg/kg/day) on pre-existing obese mice mediated by high-fat diet (HFD) for 12 weeks. Following dietary administration of WA, significant metabolic improvements in hepatic insulin sensitivity, adipocytokines with enhanced glucose tolerance were observed. The hepatic oxidative functions of obese mice treated with WA were improved via augmented antioxidant enzyme activities. The levels of serum pro-inflammatory cytokines and hepatic mRNA expressions of toll-like receptor (TLR4), nuclear factor κB (NF-κB), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand-receptor, and cyclooxygenase 2 (COX2) in HFD-induced obese mice were reduced. Mechanistically, WA increased hepatic mRNA expression of peroxisome proliferator-activated receptors (PPARs), cluster of differentiation 36 (CD36), fatty acid synthase (FAS), carnitine palmitoyltransferase 1 (CPT1), glucokinase (GCK), phosphofructokinase (PFK), and phosphoenolpyruvate carboxykinase (PCK1) that were associated with enhanced lipid and glucose metabolism. Taken together, these results indicate that WA exhibits protective effects against HFD-induced obesity through attenuation of hepatic inflammation, oxidative stress, and insulin resistance in mice.
    Matched MeSH terms: RNA, Messenger/genetics
  12. Gholami K, Muniandy S, Salleh N
    Res Vet Sci, 2014 Feb;96(1):164-70.
    PMID: 24295739 DOI: 10.1016/j.rvsc.2013.11.005
    Oestrogen-induced uterine fluid sodium (Na(+)) and bicarbonate (HCO3(-)) secretion may involve SLC4A4. We hypothesized that uterine SLC4A4 expression changes under different sex-steroid influence, therefore may account for the fluctuation in uterine fluid Na(+) and HCO3(-) content throughout the oestrous cycle. The aim of this study is to investigate the differential effects of sex-steroids and oestrous cycle phases on uterine SLC4A4 expression.
    Matched MeSH terms: RNA, Messenger/genetics
  13. Karafas S, Teng ST, Leaw CP, Alves-de-Souza C
    Harmful Algae, 2017 09;68:128-151.
    PMID: 28962975 DOI: 10.1016/j.hal.2017.08.001
    The genus Amphidinium is an important group of athecated dinoflagellates because of its high abundance in marine habitats, its member's ability to live in a variety of environmental conditions and ability to produce toxins. Furthermore, the genus is of particular interest in the biotechnology field for its potential in the pharmaceutical arena. Taxonomically the there is a history of complication and confusion over the proper identities and placements of Amphidinium species due to high genetic variability coupled with high morphological conservation. Thirteen years has passed since the most recent review of the group, and while many issues were resolved, some remain. The present study used microscopy, phylogenetics of the 28S region of rDNA, secondary structure of the ITS2 region of rDNA, compensatory base change data, and cytotoxicity data from Amphidinium strains collected world-wide to elucidate remaining confusion. This holistic approach using multiple lines of evidence resulted in a more comprehensive understanding of the morphological, ecological, and genetic characteristics that are attributed to organisms belonging to Amphidinium, including six novel species: A. fijiensis, A. magnum, A. paucianulatum, A. pseudomassartii, A. theodori, and A. tomasii.
    Matched MeSH terms: RNA, Messenger/genetics
  14. Dek MSP, Padmanabhan P, Sherif S, Subramanian J, Paliyath AG
    Int J Mol Sci, 2017 Jul 15;18(7).
    PMID: 28714880 DOI: 10.3390/ijms18071533
    Phosphatidylinositol 3-kinase (PI3K) is a key enzyme that phosphorylates phosphatidylinositol at 3'-hydroxyl position of the inositol head group initiating the generation of several phosphorylated phosphatidylinositols, collectively referred to as phosphoinositides. The function of PI3K in plant senescence and ethylene signal transduction process was studied by expression ofSolanum lycopersicumPI3K in transgenicNicotiana tabacum, and delineating its effect on flower senescence. Detached flowers of transgenic tobacco plants with overexpressedSl-PI3K(OX) displayed accelerated senescence and reduced longevity, when compared to the flowers of wild type plants. Flowers from PI3K-overexpressing plants showed enhanced ethylene production and upregulated expression of 1-aminocyclopropane-1-carboxylic acid oxidase 1 (ACO1). Real time polymerase chain reaction (PCR) analysis showed thatPI3Kwas expressed at a higher level in OX flowers than in the control. Seedlings of OX-lines also demonstrated a triple response phenotype with characteristic exaggerated apical hook, shorter hypocotyls and increased sensitivity to 1-aminocyclopropane-1-carboxylate than the control wild type seedlings. In floral tissue from OX-lines,Solanum lycopersicumphosphatidylinositol 3-kinase green fluorescent protein (PI3K-GFP) chimera protein was localized primarily in stomata, potentially in cytoplasm and membrane adjacent to stomatal pores in the guard cells. Immunoblot analysis of PI3K expression in OX lines demonstrated increased protein level compared to the control. Results of the present study suggest that PI3K plays a crucial role in senescence by enhancing ethylene biosynthesis and signaling.
    Matched MeSH terms: RNA, Messenger/genetics
  15. Haw TJ, Starkey MR, Nair PM, Pavlidis S, Liu G, Nguyen DH, et al.
    Mucosal Immunol, 2016 Jul;9(4):859-72.
    PMID: 26555706 DOI: 10.1038/mi.2015.111
    Chronic obstructive pulmonary disease (COPD) is a life-threatening inflammatory respiratory disorder, often induced by cigarette smoke (CS) exposure. The development of effective therapies is impaired by a lack of understanding of the underlining mechanisms. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with inflammatory and apoptotic properties. We interrogated a mouse model of CS-induced experimental COPD and human tissues to identify a novel role for TRAIL in COPD pathogenesis. CS exposure of wild-type mice increased TRAIL and its receptor messenger RNA (mRNA) expression and protein levels, as well as the number of TRAIL(+)CD11b(+) monocytes in the lung. TRAIL and its receptor mRNA were also increased in human COPD. CS-exposed TRAIL-deficient mice had decreased pulmonary inflammation, pro-inflammatory mediators, emphysema-like alveolar enlargement, and improved lung function. TRAIL-deficient mice also developed spontaneous small airway changes with increased epithelial cell thickness and collagen deposition, independent of CS exposure. Importantly, therapeutic neutralization of TRAIL, after the establishment of early-stage experimental COPD, reduced pulmonary inflammation, emphysema-like alveolar enlargement, and small airway changes. These data provide further evidence for TRAIL being a pivotal inflammatory factor in respiratory diseases, and the first preclinical evidence to suggest that therapeutic agents that target TRAIL may be effective in COPD therapy.
    Matched MeSH terms: RNA, Messenger/genetics*
  16. Aisha MD, Nor-Ashikin MN, Sharaniza AB, Nawawi HM, Kapitonova MY, Froemming GR
    Exp Cell Res, 2014 Aug 1;326(1):46-56.
    PMID: 24928274 DOI: 10.1016/j.yexcr.2014.06.003
    Exposure of Normal Human Osteoblast cells (NHOst) to a period of hypothermia may interrupt their cellular functions, lead to changes in bone matrix and disrupt the balance between bone formation and resorption, resulting in bone loss or delayed fracture healing. To investigate this possibility, we exposed NHOst cells to moderate (35 °C) and severe (27 °C) hypothermia for 1, 12, 24 and 72 h. The effects of hypothermia with respect to cell cytoskeleton organization, metabolic activity and the expression of cold shock chaperone proteins, osteoblast transcription factors and functional markers, were examined. Our findings showed that prolonged moderate hypothermia retained the polymerization of the cytoskeletal components. NHOst cell metabolism was affected differently according to hypothermia severity. The osteoblast transcription factors Runx2 and osterix were necessary for the transcription and translation of bone matrix proteins, where alkaline phosphatase (Alp) activity and osteocalcin (OCN) bone protein were over expressed under hypothermic conditions. Consequently, bone mineralization was stimulated after exposure to moderate hypothermia for 1 week, indicating bone function was not impaired. The cold shock chaperone protein Rbm3 was significantly upregulated (p<0.001) during the cellular stress adaption under hypothermic conditions. We suggest that Rbm3 has a dual function: one as a chaperone protein that stabilizes mRNA transcripts and a second one in enhancing the transcription of Alp and Ocn genes. Our studies demonstrated that hypothermia permitted the in vitro maturation of NHOst cells probably through an osterix-dependent pathway. For that reason, we suggest that moderate hypothermia can be clinically applied to counteract heat production at the fracture site that delays fracture healing.
    Matched MeSH terms: RNA, Messenger/genetics
  17. Wang LM, Bu HY, Song FB, Zhu WB, Fu JJ, Dong ZJ
    PMID: 31310814 DOI: 10.1016/j.cbpa.2019.110529
    Red tilapia has become more popular for aquaculture production in China in recent years. However, the pigmentation differentiation that has resulted from the process of genetic breeding and skin color variation during the overwintering period are the main problems limiting the development of commercial culture. The genetic basis of skin color differentiation is still not understood. Solute carrier family 7 member 11 (slc7a11) has been identified to be a critical genetic regulator of pheomelanin synthesis in the skin of mammals. However, little information is available about its molecular characteristics, expression, location and function in skin color differentiation of fish. In this study, three complete cDNA sequences (2159 bp, 2190 bp and 2249 bp) of slc7a11 were successfully isolated from Malaysian red tilapia, encoding polypeptides of 492, 525 and 492 amino acids respectively. Quantitative real-time PCR demonstrated that slc7a11 mRNA expression is high in the ventral skin of PR (pink with scattered red spots) fish. Immunofluorescence analysis revealed that xCT (the protein encoded by slc7a11) was concentrated mainly in the cytoplasm and nucleus of both the dorsal and ventral skin cells of fish. After RNA interference of slc7a11, slc7a11 and cbs mRNA expressions decreased, but the tyr mRNA expression increased in the skin of fish. Results suggest that slc7a11 plays an important role in skin color formation and differentiation of red tilapia through the melanogenesis pathway.
    Matched MeSH terms: RNA, Messenger/genetics
  18. Kwan YM, Meon S, Ho CL, Wong MY
    J Plant Physiol, 2015 Feb 01;174:131-6.
    PMID: 25462975 DOI: 10.1016/j.jplph.2014.10.003
    Nitric oxide associated 1 (NOA1) protein is implicated in plant disease resistance and nitric oxide (NO) biosynthesis. A full-length cDNA encoding of NOA1 protein from oil palm (Elaeis guineensis) was isolated and designated as EgNOA1. Sequence analysis suggested that EgNOA1 was a circular permutated GTPase with high similarity to the bacterial YqeH protein of the YawG/YlqF family. The gene expression of EgNOA1 and NO production in oil palm root tissues treated with Ganoderma boninense, the causal agent of basal stem rot (BSR) disease were profiled to investigate the involvement of EgNOA1 during fungal infection and association with NO biosynthesis. Real-time PCR (qPCR) analysis revealed that the transcript abundance of EgNOA1 in root tissues was increased by G. boninense treatment. NO burst in Ganoderma-treated root tissue was detected using Griess reagent, in advance of the up-regulation of the EgNOA1 transcript. This indicates that NO production was independent of EgNOA1. However, the induced expression of EgNOA1 in Ganoderma-treated root tissues implies that it might be involved in plant defense responses against pathogen infection.
    Matched MeSH terms: RNA, Messenger/genetics
  19. Hamid AA, Idrus RB, Saim AB, Sathappan S, Chua KH
    Clinics (Sao Paulo), 2012;67(2):99-106.
    PMID: 22358233
    OBJECTIVES: Understanding the changes in chondrogenic gene expression that are involved in the differentiation of human adipose-derived stem cells to chondrogenic cells is important prior to using this approach for cartilage repair. The aims of the study were to characterize human adipose-derived stem cells and to examine chondrogenic gene expression after one, two, and three weeks of induction.

    MATERIALS AND METHODS: Human adipose-derived stem cells at passage 4 were evaluated by flow cytometry to examine the expression of surface markers. These adipose-derived stem cells were tested for adipogenic and osteogenic differentiation capacity. Ribonucleic acid was extracted from the cells for quantitative polymerase chain reaction analysis to determine the expression levels of chondrogenic genes after chondrogenic induction.

    RESULTS: Human adipose-derived stem cells were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen and successfully differentiated into adipogenic and osteogenic lineages. The human adipose-derived stem cells aggregated and formed a dense matrix after chondrogenic induction. The expression of chondrogenic genes (collagen type II, aggrecan core protein, collagen type XI, COMP, and ELASTIN) was significantly higher after the first week of induction. However, a significantly elevated expression of collagen type X was observed after three weeks of chondrogenic induction.

    CONCLUSION: Human adipose-derived stem cells retain stem cell characteristics after expansion in culture to passage 4 and serve as a feasible source of cells for cartilage regeneration. Chondrogenesis in human adipose-derived stem cells was most prominent after one week of chondrogenic induction.

    Matched MeSH terms: RNA, Messenger/genetics
  20. Zain MA, Jahan SN, Reynolds GP, Zainal NZ, Kanagasundram S, Mohamed Z
    BMC Med Genet, 2012;13:91.
    PMID: 23031404 DOI: 10.1186/1471-2350-13-91
    One of the genes suggested to play an important role in the pathophysiology of bipolar disorder (BPD) is PDLIM5, which encodes LIM domain protein. Our main objective was to examine the effect of olanzapine treatment on PDLIM5 mRNA expression in the peripheral blood leukocytes of BPD patients.
    Matched MeSH terms: RNA, Messenger/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links