Displaying publications 81 - 100 of 105 in total

Abstract:
Sort:
  1. Bringmann G, Dreyer M, Kopff H, Rischer H, Wohlfarth M, Hadi HA, et al.
    J Nat Prod, 2005 May;68(5):686-90.
    PMID: 15921410
    Three new fully dehydrogenated naphthylisoquinoline alkaloids, the 7,1'-coupled ent-dioncophylleine A (3a), the likewise 7,1'-coupled 5'-O-demethyl-ent-dioncophylleine A (4), and the 7,8'-linked dioncophylleine D (5), have been isolated from the leaves of the recently described Malaysian highland liana Ancistrocladusbenomensis. All of them lack an oxygen function at C-6; this so-called Dioncophyllaceae-type structural subclass had previously been found only in naphthylisoquinoline alkaloids from West and Central African plants. Moreover, compounds 3a and 4 are the first fully dehydrogenated, i.e., only axially chiral, naphthylisoquinoline alkaloids of this type that are optically active; compound 5, by contrast, is fully racemic, due to its configurationally unstable biaryl axis. The structural elucidation was achieved by spectroscopic and chiroptical methods. Biological activities of these alkaloids against different protozoan parasites are described.
    Matched MeSH terms: Plasmodium falciparum/drug effects
  2. Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, et al.
    Parasitol Int, 2016 Jun;65(3):276-84.
    PMID: 26873539 DOI: 10.1016/j.parint.2016.02.003
    The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC(50) were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC(50) were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC(50) were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies.
    Matched MeSH terms: Plasmodium falciparum/drug effects*
  3. Siti Najila MJ, Noor Rain A, Mohamad Kamel AG, Syed Zahir SI, Khozirah S, Lokman Hakim S, et al.
    J Ethnopharmacol, 2002 Oct;82(2-3):239-42.
    PMID: 12242001
    Goniothalamus scortechinii, Andrographis paniculata and Aralidium pinnatifidum were selected for the study based on their ethnomedicinal values. They were screened for anti-malarial activity towards Plasmodium falciparum in vitro using the lactate dehydrogenase (LDH) assay. The crude extract of G. scortechinii exhibited the most potent schizonticidal activity compared to the other extracts. It is effective against both the chloroquine resistant isolate, Gombak A and the sensitive strain, D10 of Plasmodium falciparum. Furthermore a better IC(50) value was obtained against the resistant strain, (9 microg/ml) compared to the sensitive strain, 40 microg/ml. When the crude extract was fractionated into 3 fractions, the chloroform fraction yielded the best activity, exhibiting equipotency against both strains of parasite used; IC(50) of 23.53 microg/ml against Gombak A and 21.06 microg/ml against D10.
    Matched MeSH terms: Plasmodium falciparum/drug effects
  4. Parapini S, Olliaro P, Navaratnam V, Taramelli D, Basilico N
    Antimicrob Agents Chemother, 2015 Jul;59(7):4046-52.
    PMID: 25918150 DOI: 10.1128/AAC.00183-15
    Artemisinins are peroxidic antimalarial drugs known to be very potent but highly chemically unstable; they degrade in the presence of ferrous iron, Fe(II)-heme, or biological reductants. Less documented is how this translates into chemical stability and antimalarial activity across a range of conditions applying to in vitro testing and clinical situations. Dihydroartemisinin (DHA) is studied here because it is an antimalarial drug on its own and the main metabolite of other artemisinins. The behaviors of DHA in phosphate-buffered saline, plasma, or erythrocyte lysate at different temperatures and pH ranges were examined. The antimalarial activity of the residual drug was evaluated using the chemosensitivity assay on Plasmodium falciparum, and the extent of decomposition of DHA was established through use of high-performance liquid chromatography with electrochemical detection analysis. The role of the Fe(II)-heme was investigated by blocking its reactivity using carbon monoxide (CO). A significant reduction in the antimalarial activity of DHA was seen after incubation in plasma and to a lesser extent in erythrocyte lysate. Activity was reduced by half after 3 h and almost completely abolished after 24 h. Serum-enriched media also affected DHA activity. Effects were temperature and pH dependent and paralleled the increased rate of decomposition of DHA from pH 7 upwards and in plasma. These results suggest that particular care should be taken in conducting and interpreting in vitro studies, prone as their results are to experimental and drug storage conditions. Disorders such as fever, hemolysis, or acidosis associated with malaria severity may contribute to artemisinin instability and reduce their clinical efficacy.
    Matched MeSH terms: Plasmodium falciparum/drug effects
  5. Mungthin M, Watanatanasup E, Sitthichot N, Suwandittakul N, Khositnithikul R, Ward SA
    Am J Trop Med Hyg, 2017 03;96(3):624-629.
    PMID: 28044042 DOI: 10.4269/ajtmh.16-0668
    Piperaquine combined with dihydroartemisinin is one of the artemisinin derivative combination therapies, which can replace artesunate-mefloquine in treating uncomplicated falciparum malaria in Thailand. The aim of this study was to determine the in vitro sensitivity of Thai Plasmodium falciparum isolates against piperaquine and the influence of the pfmdr1 gene on in vitro response. One hundred and thirty-seven standard laboratory and adapted Thai isolates of P. falciparum were assessed for in vitro piperaquine sensitivity. Polymorphisms of the pfmdr1 gene were determined by polymerase chain reaction methods. The mean and standard deviation of the piperaquine IC50 in Thai isolates of P. falciparum were 16.7 ± 6.3 nM. The parasites exhibiting chloroquine IC50 of ≥ 100 nM were significantly less sensitive to piperaquine compared with the parasite with chloroquine IC50 of < 100 nM. No significant association between the pfmdr1 copy number and piperaquine IC50 values was found. In contrast, the parasites containing the pfmdr1 86Y allele exhibited significantly reduced piperaquine sensitivity. Before nationwide implementation of dihydroartemisinin-piperaquine as the first-line treatment in Thailand, in vitro and in vivo evaluations of this combination should be performed especially in areas where parasites containing the pfmdr1 86Y allele are predominant such as the Thai-Malaysian border.
    Matched MeSH terms: Plasmodium falciparum/drug effects
  6. Hassan WRM, Basir R, Ali AH, Embi N, Sidek HM
    Trop Biomed, 2019 Sep 01;36(3):776-791.
    PMID: 33597499
    Malarial pathogenesis involves among others, uncontrolled or excessive cytokine production arising from dysregulated immune responses mounted by the host to eliminate the plasmodial parasite. The ubiquitous serine/threonine kinase, glycogen synthase kinase3β (GSK3β) is a crucial regulator of the balance between pro- and anti-inflammatory cytokine productions in the inflammatory response to pathogenic infections. Andrographolide, a bioactive compound in Andrographis paniculata, displays GSK3- inhibitory effects. A previous study elsewhere has shown that this compound has antimalarial activity but the molecular basis of its action is yet to be elucidated. Here we aimed to study the anti-malarial activity of andrographolide in a murine model of malarial infection to investigate whether its mechanism of action involves cytokine modulation and inhibition of GSK3β. Andrographolide showed strong and selective anti-plasmodial activity (IC50 = 13.70±0.71 µM; SI = 30.43) when tested against cultures of P. falciparum 3D7. Intraperitoneal administration of andrographolide (5 mg/kg body weight (bw)) into P. berghei NK65-infected ICR mice resulted in chemo-suppression of 60.17±2.12%, and significantly (P<0.05) improved median survival time of infected mice compared to nontreated control. In addition, andrographolide treatment significantly (P<0.05) decreased the level of serum pro-inflammatory cytokine, IFN-γ (1.4-fold) whilst the anti-inflammatory cytokines, IL-10 and IL-4 were increased 2.3- and 2.6-fold respectively. Western blot analyses revealed that andrographolide treatment of P. berghei NK65-infected mice resulted in an increased level of phosphorylated GSK3β (Ser9) in liver of infected mice. Andrographolide administration also decreased the levels of phosphorylated NF-κB p65 (Ser536) and phosphorylated Akt (Ser473) in liver of malaria- infected animals. Taken together, our findings demonstrate that the cytokine-modulating effect of andrographolide in experimental malarial infection involves at least in part inhibition of NF-κB activation as a consequence of GSK3β inhibition. Based on its cytokine-modulating effects, andrographolide is thus a plausible candidate for adjunctive therapy in malaria subject to clinical evaluations.
    Matched MeSH terms: Plasmodium falciparum/drug effects
  7. Nogawa T, Okano A, Lim CL, Futamura Y, Shimizu T, Takahashi S, et al.
    J Antibiot (Tokyo), 2017 02;70(2):222-225.
    PMID: 27599762 DOI: 10.1038/ja.2016.113
    Matched MeSH terms: Plasmodium falciparum/drug effects
  8. Shah SM, Ullah F, Khan S, Shah SM, de Matas M, Hussain Z, et al.
    Drug Des Devel Ther, 2016;10:3837-3850.
    PMID: 27920499
    Artemether (ARTM) is a very effective antimalarial drug with poor solubility and consequently low bioavailability. Smart nanocrystals of ARTM with particle size of 161±1.5 nm and polydispersity index of 0.172±0.01 were produced in <1 hour using a wet milling technology, Dena(®) DM-100. The crystallinity of the processed ARTM was confirmed using differential scanning calorimetry and powder X-ray diffraction. The saturation solubility of the ARTM nanocrystals was substantially increased to 900 µg/mL compared to the raw ARTM in water (145.0±2.3 µg/mL) and stabilizer solution (300.0±2.0 µg/mL). The physical stability studies conducted for 90 days demonstrated that nanocrystals stored at 2°C-8°C and 25°C were very stable compared to the samples stored at 40°C. The nanocrystals were also shown to be stable when processed at acidic pH (2.0). The solubility and dissolution rate of ARTM nanocrystals were significantly increased (P<0.05) compared to those of its bulk powder form. The results of in vitro studies showed significant antimalarial effect (P<0.05) against Plasmodium falciparum and Plasmodium vivax. The IC50 (median lethal oral dose) value of ARTM nanocrystals was 28- and 54-fold lower than the IC50 value of unprocessed drug and 13- and 21-fold lower than the IC50 value of the marketed tablets, respectively. In addition, ARTM nanocrystals at the same dose (2 mg/kg) showed significantly (P<0.05) higher reduction in percent parasitemia (89%) against P. vivax compared to the unprocessed (27%), marketed tablets (45%), and microsuspension (60%). The acute toxicity study demonstrated that the LD50 value of ARTM nanocrystals is between 1,500 mg/kg and 2,000 mg/kg when given orally. This study demonstrated that the wet milling technology (Dena(®) DM-100) can produce smart nanocrystals of ARTM with enhanced antimalarial activities.
    Matched MeSH terms: Plasmodium falciparum/drug effects
  9. Jegede FE, Oyeyi TI, Abdulrahman SA, Mbah HA, Badru T, Agbakwuru C, et al.
    PLoS One, 2017;12(3):e0174233.
    PMID: 28346490 DOI: 10.1371/journal.pone.0174233
    BACKGROUND: Human immunodeficiency virus (HIV) and malaria co-infection may present worse health outcomes in the tropics. Information on HIV/malaria co-infection effect on immune-hematological profiles is critical for patient care and there is a paucity of such data in Nigeria.

    OBJECTIVE: To evaluate immune-hematological profiles among HIV infected patients compared to HIV/malaria co-infected for ART management improvement.

    METHODS: This was a cross sectional study conducted at Infectious Disease Hospital, Kano. A total of 761 consenting adults attending ART clinic were randomly selected and recruited between June and December 2015. Participants' characteristics and clinical details including two previous CD4 counts were collected. Venous blood sample (4ml) was collected in EDTA tube for malaria parasite diagnosis by rapid test and confirmed with microscopy. Hematological profiles were analyzed by Sysmex XP-300 and CD4 count by Cyflow cytometry. Data was analyzed with SPSS 22.0 using Chi-Square test for association between HIV/malaria parasites co-infection with age groups, gender, ART, cotrimoxazole and usage of treated bed nets. Mean hematological profiles by HIV/malaria co-infection and HIV only were compared using independent t-test and mean CD4 count tested by mixed design repeated measures ANOVA. Statistical significant difference at probability of <0.05 was considered for all variables.

    RESULTS: Of the 761 HIV infected, 64% were females, with a mean age of ± (SD) 37.30 (10.4) years. Prevalence of HIV/malaria co-infection was 27.7% with Plasmodium falciparum specie accounting for 99.1%. No statistical significant difference was observed between HIV/malaria co-infection in association to age (p = 0.498) and gender (p = 0.789). A significantly (p = 0.026) higher prevalence (35.2%) of co-infection was observed among non-ART patients compared to (26%) ART patients. Prevalence of co-infection was significantly lower (20.0%) among cotrimoxazole users compared to those not on cotrimoxazole (37%). The same significantly lower co-infection prevalence (22.5%) was observed among treated bed net users compared to those not using treated bed nets (42.9%) (p = 0.001). Out of 16 hematology profiles evaluated, six showed significant difference between the two groups (i) packed cell volume (p = <0.001), (ii) mean cell volume (p = 0.005), (iii) mean cell hemoglobin concentration (p = 0.011), (iv) absolute lymphocyte count (p = 0.022), (v) neutrophil percentage count (p = 0.020) and (vi) platelets distribution width (p = <0.001). Current mean CD4 count cell/μl (349±12) was significantly higher in HIV infected only compared to co-infected (306±17), (p = 0.035). A significantly lower mean CD4 count (234.6 ± 6.9) was observed among respondents on ART compared to non-ART (372.5 ± 13.2), p<0.001, mean difference = -137.9).

    CONCLUSION: The study revealed a high burden of HIV and malaria co-infection among the studied population. Co-infection was significantly lower among patients who use treated bed nets as well as cotrimoxazole chemotherapy and ART. Six hematological indices differed significantly between the two groups. Malaria and HIV co-infection significantly reduces CD4 count. In general, to achieve better management of all HIV patients in this setting, diagnosing malaria, prompt antiretroviral therapy, monitoring CD4 and some hematology indices on regular basis is critical.

    Matched MeSH terms: Plasmodium falciparum/drug effects
  10. Zaw MT, Emran NA, Lin Z
    J Microbiol Immunol Infect, 2018 Apr;51(2):159-165.
    PMID: 28711439 DOI: 10.1016/j.jmii.2017.06.009
    BACKGROUND: In the fight against malaria caused by Plasmodium falciparum, the successes achieved by artemisinin were endangered by resistance of the parasites to the drug. Whole genome sequencing approach on artemisinin resistant parasite line discovered k13 gene associated with drug resistance. In vitro and in vivo studies indicated mutations in the k13 gene were linked to the artemisinin resistance.

    METHODOLOGY: The literatures published after April, 2015 up to December, 2016 on k13 mutant alleles for artemisinin resistance in Plasmodium falciparum and relevant literatures were comprehensively reviewed.

    RESULTS: To date, 13 non-synonymous mutations of k13 gene have been observed to have slow parasite clearance. Worldwide mapping of k13 mutant alleles have shown mutants associated with artemisinin resistance were confined to southeast Asia and China and did not invade to African countries. Although in vitro ring stage survival assay of 0-3 h was a recently developed assay, it was useful for rapid detection of artemisinin resistance associated k13 allelic marker in the parasite. Recently, dissemination of k13 mutant alleles was recommended to be investigated by identity of haplotypes. Significant characteristics of well described alleles in the reports were mentioned in this review for the benefit of future studies.

    CONCLUSION: According to the updates in the review, it can be concluded artemisinin resistance does not disseminate to India and African countries within short period whereas regular tracking of these mutants is necessary.

    Matched MeSH terms: Plasmodium falciparum/drug effects*
  11. Seethamchai S, Buppan P, Kuamsab N, Teeranaipong P, Putaporntip C, Jongwutiwes S
    Infect Genet Evol, 2018 11;65:35-42.
    PMID: 30016713 DOI: 10.1016/j.meegid.2018.07.015
    The amino acid substitution at residue 76 of the food vacuolar transmembrane protein encoded by the chloroquine resistance transporter gene of Plasmodium falciparum (Pfcrt) is an important, albeit imperfect, determinant of chloroquine susceptibility status of the parasite. Other mutations in Pfcrt can modulate susceptibility of P. falciparum to other antimalarials capable of interfering with heme detoxification process, and may exert compensatory effect on parasite growth rate. To address whether nationwide implementation of artemisinin combination therapy (ACT) in Thailand could affect sequence variation in exon 2 and introns of Pfcrt, we analyzed 136 P. falciparum isolates collected during 1997 and 2016 from endemic areas bordering Myanmar, Cambodia and Malaysia. Results revealed 6 haplotypes in exon 2 of Pfcrt with 2 novel substitutions at c.243A > G (p.R81) and c.251A > T (p.N84I). Positive selection was observed at amino acid residues 75, 76 and 97. Four, 3, and 2 alleles of microsatellite (AT/TA) repeats occurred in introns 1, 2 and 4, respectively, resulting in 7 different 3-locus haplotypes. The number of haplotypes and haplotype diversity of exon 2, and introns 1, 2 and 4 were significantly greater among isolates collected during 2009 and 2016 than those collected during 1997 and 2008 when 3-day ACT and 2-day ACT regimens were implemented nationwide, respectively (p falciparum in Thailand continues to evolve and could have been affected by selective pressure from modification of ACT regimen.
    Matched MeSH terms: Plasmodium falciparum/drug effects*
  12. Dwivedi MK, Shukla R, Sharma NK, Manhas A, Srivastava K, Kumar N, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114076.
    PMID: 33789139 DOI: 10.1016/j.jep.2021.114076
    ETHANOPHARMACOLOGICAL RELEVANCE: Limited drugs, rise in drug resistance against frontline anti-malarial drugs, non-availability of efficacious vaccines and high cost of drug development hinders malaria intervention programs. Search for safe, effective and affordable plant based anti-malarial agents, thus becomes crucial and vital in the current scenario. The Vitex negundo L. is medicinal plant possessing a variety of pharmaceutically important compounds. The plant is used traditionally worldwide for the treatment of malaria including India and Malaysia by the indigenous tribes. In vitro studies have reported the anti-malarial use of the plant in traditional medicinal systems.

    AIM OF THE STUDY: The aim of the current study is to evaluate the traditionally used medicinal plants for in vitro anti-malarial activity against human malaria parasite Plasmodium falciparum and profiling secondary metabolite using spectroscopic and chromatographic methods. Chemical profiling of active secondary metabolites in the extracts was undertaken using LC-MS.

    MATERIALS AND METHODS: Based on the ethno-botanical data V. negundo L. was selected for in vitro anti-malarial activity against P. falciparum chloroquine-sensitive (3D7) and multidrug resistant (K1) strains using SYBR Green-I based fluorescence assay. Cytotoxicity of extracts was evaluated in VERO cell line using the MTT assay. Haemolysis assay was performed using human red blood cells. Secondary metabolites profiling was undertaken using chromatographic and spectroscopic analysis. Liquid chromatography analysis was performed using a C18, 150 X 2.1, 2.6 μm column with gradient mobile phase Solvent A: 95% (H2O: ACN), Solvent B: Acetonitrile, Solvent C: Methanol, Solvent D: 5 mM NH4 in 95:5 (H2O: ACN) at a constant flow rate of 0.250 ml/min. The LC-MS spectra were acquired in both positive and negative ion modes with electrospray ionization (ESI) source.

    RESULTS: The anti-malarial active extract of V. negundo L. leaf exhibited potent anti-malarial activity with IC50 values of 7.21 μg/ml and 7.43 μg/ml against 3D7 and K1 strains, respectively with no evidence of significant cytotoxicity against mammalian cell line (VERO) and no toxicity as observed in haemolysis assay. The HPLC-LC-MS analysis of the extract led to identification of 73 compounds. We report for the first time the presence of Sabinene hydrate acetate, 5-Hydroxyoxindole, 2(3,4-dimethoxyphenyl)-6, 7-dimethoxychromen-4-one, Cyclotetracosa-1, 13-diene and 5, 7-Dimethoxyflavanone in the anti-malarial active extract of V. negundo L. leaf. Agnuside, Behenic acid and Globulol are some of the novel compounds with no reports of anti-malarial activity so far and require further evaluation in pure form for the development of potent anti-malarial compounds.

    CONCLUSIONS: The result report and scientifically validate the traditional use of V. negundo L. for the treatment of malaria providing new avenues for anti-malarial drug development. Several novel and unknown compounds were identified that need to be further characterized for anti-malarial potential.

    Matched MeSH terms: Plasmodium falciparum/drug effects
  13. Chan KL, Choo CY, Abdullah NR, Ismail Z
    J Ethnopharmacol, 2004 Jun;92(2-3):223-7.
    PMID: 15138004 DOI: 10.1016/j.jep.2004.02.025
    The roots of Eurycoma longifolia Jack have been used as traditional medicine to treat malaria. A systematic bioactivity-guided fractionation of this plant was conducted involving the determination of the effect of its various extracts and their chemical constituents on the lactate dehydrogenase activity of in vitro chloroquine-resistant Gombak A isolate and chloroquine-sensitive D10 strain of Plasmodium falciparum parasites. Their antiplasmodial activity was also compared with their known in vitro cytotoxicity against KB cells. Four quassinoids, eurycomanone (1), 13,21-dihydroeurycomanone (3), 13 alpha(21)-epoxyeurycomanone (4), eurycomalactone (6) and an alkaloid, 9-methoxycanthin-6-one (7), displayed higher antiplasmodial activity against Gombak A isolate but were less active against the D10 strain when compared with chloroquine. Amongst the compounds tested, 1 and 3 showed higher selectivity indices obtained for the cytotoxicity to antiplasmodial activity ratio than 14,15 beta-dihydroxyklaineanone (2), eurycomanol (5), 6 and 7.
    Matched MeSH terms: Plasmodium falciparum/drug effects*
  14. Chan KL, Choo CY, Abdullah NR
    Planta Med, 2005 Oct;71(10):967-9.
    PMID: 16254833 DOI: 10.1055/s-2005-864188
    Among the quassinoids isolated from Eurycoma longifolia Jack, eurycomanone was identified as the most potent and toxic inhibitor of the chloroquine-resistant Gombak A isolate of Plasmodium falciparum. Several diacylated derivatives of eurycomanone, 1,15-di-O-isovaleryleurycomanone, 1,15-di-O-(3,3-dimethylacryloyl)- eurycomanone and 1,15-di-O-benzoyleurycomanone were synthesized by direct acylation with the respective acid chlorides. The monoacylated 15-O-isovaleryleurycomanone was synthesized by selective protection of the other hydroxy groups of eurycomanone with trimethylsilyl trifluoromethanesulphonate to enable the exclusive acylation of its C-15 hydroxy group. This was followed by the removal of the protecting groups with citric acid. The diacylated eurycomanones exhibited lower antiplasmodial activity against the Gombak A isolates and lower toxicity in the brine shrimp assay when compared to eurycomanone. In contrast, the monoacylated derivative displayed comparable antiplasmodial potency to eurycomanone, but its toxicity was reduced. Thus, preliminary studies of the synthesized acylated eurycomanones have shown that acylation only at the C-15 hydroxy group may be worthy of further antimalarial investigation.
    Matched MeSH terms: Plasmodium falciparum/drug effects*
  15. Zahari A, Cheah FK, Mohamad J, Sulaiman SN, Litaudon M, Leong KH, et al.
    Planta Med, 2014 May;80(7):599-603.
    PMID: 24723007 DOI: 10.1055/s-0034-1368349
    The crude extract of the bark of Dehaasia longipedicellata exhibited antiplasmodial activity against the growth of Plasmodium falciparum K1 isolate (resistant strain). Phytochemical studies of the extract led to the isolation of six alkaloids: two morphinandienones, (+)-sebiferine (1) and (-)-milonine (2); two aporphines, (-)-boldine (3) and (-)-norboldine (4); one benzlyisoquinoline, (-)-reticuline (5); and one bisbenzylisoquinoline, (-)-O-O-dimethylgrisabine (6). Their structures were determined on the basis of 1D and 2D NMR, IR, UV, and LCMS spectroscopic techniques and upon comparison with literature values. Antiplasmodial activity was determined for all of the isolated compounds. They showed potent to moderate activity with IC50 values ranging from 0.031 to 30.40 µM. (-)-O-O-dimethylgrisabine (6) and (-)-milonine (2) were the two most potent compounds, with IC50 values of 0.031 and 0.097 µM, respectively, that were comparable to the standard, chloroquine (0.090 µM). The compounds were also assessed for their antioxidant activities with di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (IC50 = 18.40-107.31 µg/mL), reducing power (27.40-87.40 %), and metal chelating (IC50 = 64.30 to 257.22 µg/mL) having good to low activity. (-)-O-O-dimethylgrisabine (6) exhibited a potent antioxidant activity of 44.3 % reducing power, while di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium and metal chelating activities had IC50 values of 18.38 and 64.30 µg/mL, respectively. Thus it may be considered as a good reductant with the ability to chelate metal and prevent pro-oxidant activity. In addition to the antiplasmodial and antioxidant activities, the isolated compounds were also tested for their cytotoxicity against a few cancer and normal cell lines. (-)-Norboldine (4) exhibited potent cytotoxicity towards pancreatic cancer cell line BxPC-3 with an IC50 value of 27.060 ± 1.037 µM, and all alkaloids showed no toxicity towards the normal pancreatic cell line (hTERT-HPNE).
    Matched MeSH terms: Plasmodium falciparum/drug effects*
  16. Das S, Tripathy S, Pramanik P, Saha B, Roy S
    Cytokine, 2021 08;144:155555.
    PMID: 33992538 DOI: 10.1016/j.cyto.2021.155555
    Emergence and spread of resistant parasites to the newest chemotherapeutic anti-malarial agents are the biggest challenges against malaria control programs. Therefore, developing a novel effective treatment to reduce the overgrowing burden of multidrug resistant malaria is a pressing need. Herein, we have developed a biocompatible and biodegradable, non-toxic chitosan-tripolyphosphate-chloroquine (CS-TPP CQ) nanoparticle. CS-TPP CQ nanoparticles effectively kill the parasite through redox generation and induction of the pro- and anti-inflammatory cytokines in both sensitive and resistant parasite in vitro. The in vitro observations showed a strong inhibitory effect (p 
    Matched MeSH terms: Plasmodium falciparum/drug effects
  17. Mphahlele MJ, Mmonwa MM, Choong YS
    Molecules, 2017 Jul 02;22(7).
    PMID: 28671598 DOI: 10.3390/molecules22071099
    A series of novel N-((2,5-diaryl-3-trifluoroacetyl)-1H-indol-7-yl)acetamides has been prepared via a successive and one-pot reaction sequence involving initial trifluoroacetic acid-mediated Beckmann rearrangement of the oximes derived from the 1-(2,5-diaryl-1H-indol-7-yl)ethanones, followed by trifluoroacetylation of the incipient N-(2,5-diaryl-1H-indol-7-yl)-acetamides with trifluoroacetic anhydride. The prepared compounds were evaluated for potential in vitro antiplasmodial properties. Preliminary results from antiplasmodial activity against the chloroquine-sensitive 3D7 strain of Plasmodium falciparum revealed that a combination of 2-(4-flurophenyl)- and 5-(4-fluorophenyl) or 2-(4-flurophenyl)- and 4-fluorostyryl groups in compounds 3(a,f) and 4(a,g), for example, is required for biological activity for both series of compounds. Their possible mode of action against the plasmodial parasite is explained theoretically through molecular docking of the most active compounds against the parasite lactate dehydrogenase (pLDH). These compounds were docked at the entrance of NAD+ in pLDH presumably hindering entry of lactate to cause the observed inhibition effect of pLDH. The four compounds were found to exhibit low toxicity against monkey kidney Vero cells at the highest concentrations tested.
    Matched MeSH terms: Plasmodium falciparum/drug effects
  18. Wernsdorfer WH, Ismail S, Chan KL, Congpuong K, Wernsdorfer G
    Wien Klin Wochenschr, 2009 Oct;121 Suppl 3:23-6.
    PMID: 19915812 DOI: 10.1007/s00508-009-1230-7
    The habitats of Eurycoma longifolia Jack, a slender tree, are jungles in Malaysia and Indonesia. It belongs to the family Simaroubaceae and is a source of quassinoids with anabolic, antimalarial and cytostatic activity. In this study, conducted during 2008 in Mae Sot, Thailand, a standardized extract of E. longifolia containing three major quassinoids, eurycomanone (1), 13,21-dihydroeurycomanone (2) and 13alpha(21)-epoxyeurycomanone (3) was evaluated for antiplasmodial activity against Plasmodium falciparum and its activity has been compared with that of artemisinin, using 38 fresh parasite isolates and assessment of inhibition of schizont maturation. The IC(50), IC(90) and IC(99) values for artemisinin were 4.30, 45.48 and 310.97 microg/l, and those for the root extract from E. longifolia 14.72, 139.65 and 874.15 microg/l respectively. The GMCOC for artemisinin was 337.81 mug/l, and for the plant extract it was 807.41 microg/l. The log-concentration probit regressions were parallel. The inhibitory activity of the E. longifolia extract was higher than that expected from the three quassinoids isolated from the plant, suggesting synergism between the quassinoids or the presence of other unidentified compounds.
    Matched MeSH terms: Plasmodium falciparum/drug effects*
  19. Sujitha V, Murugan K, Dinesh D, Pandiyan A, Aruliah R, Hwang JS, et al.
    Aquat Toxicol, 2017 Jul;188:100-108.
    PMID: 28482328 DOI: 10.1016/j.aquatox.2017.04.015
    Currently, nano-formulated mosquito larvicides have been widely proposed to control young instars of malaria vector populations. However, the fate of nanoparticles in the aquatic environment is scarcely known, with special reference to the impact of nanoparticles on enzymatic activity of non-target aquatic invertebrates. In this study, we synthesized CdS nanoparticles using a green protocol relying on the cheap extract of Valoniopsis pachynema algae. CdS nanoparticles showed high toxicity on young instars of the malaria vectors Anopheles stephensi and A. sundaicus. The antimalarial activity of the nano-synthesized product against chloroquine-resistant (CQ-r) Plasmodium falciparum parasites was investigated. From a non-target perspective, we focused on the impact of this novel nano-pesticide on antioxidant enzymes acetylcholinesterase (AChE) and glutathione S-transferase (GST) activities of the mud crab Scylla serrata. The characterization of nanomaterials was carried out by UV-vis and FTIR spectroscopy, as well as SEM and XRD analyses. In mosquitocidal assays, LC50 of V. pachynema-synthesized CdS nanoparticles on A. stephensi ranged from 16.856 (larva I), to 30.301μg/ml (pupa), while for An. sundaicus they ranged from 13.584 to 22.496μg/ml. The antiplasmodial activity of V. pachynema extract and CdS nanoparticles was evaluated against CQ-r and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of V. pachynema extract was 58.1μg/ml (CQ-s) and 71.46μg/ml (CQ-r), while nano-CdS IC50 was 76.14μg/ml (CQ-s) and 89.21μg/ml (CQ-r). In enzymatic assays, S. serrata crabs were exposed to sub-lethal concentrations, i.e. 4, 6 and 8μg/ml of CdS nanoparticles, assessing changes in GST and AChE activity after 16days. We observed significantly higher activity of GST, if compared to the control, during the whole experiment period. In addition, a single treatment with CdS nanoparticles led to a significant decrease in AChE activity over time. The toxicity of CdS nanoparticles and Cd ions in aqueous solution was also assessed in mud crabs, showing higher toxicity of aqueous Cd ions if compared to nano-CdS. Overall, our results underlined the efficacy of green-synthesized CdS nanoparticles in malaria vector control, outlining also significant impacts on the enzymatic activity of non-target aquatic organisms, with special reference to mud crabs.
    Matched MeSH terms: Plasmodium falciparum/drug effects
  20. Sugaram R, Suwannasin K, Kunasol C, Mathema VB, Day NPJ, Sudathip P, et al.
    Malar J, 2020 Mar 04;19(1):107.
    PMID: 32127009 DOI: 10.1186/s12936-020-03176-x
    BACKGROUND: Resistance to anti-malarials is a major threat to the control and elimination of malaria. Sulfadoxine-pyrimethamine (SP) anti-malarial treatment was used as a national policy for treatment of uncomplicated falciparum malaria in Thailand from 1973 to 1990. In order to determine whether withdrawal of this antifolate drug has led to restoration of SP sensitivity, the prevalence of genetic markers of SP resistance was assessed in historical Thai samples.

    METHODS: Plasmodium falciparum DNA was collected from the Thailand-Myanmar, Thailand-Malaysia and Thailand-Cambodia borders during 2008-2016 (N = 233). Semi-nested PCR and nucleotide sequencing were used to assess mutations in Plasmodium falciparum dihydrofolate reductase (pfdhfr), P. falciparum dihydropteroate synthase (pfdhps). Gene amplification of Plasmodium falcipaurm GTP cyclohydrolase-1 (pfgch1) was assessed by quantitative real-time PCR. The association between pfdhfr/pfdhps mutations and pfgch1 copy numbers were evaluated.

    RESULTS: Mutations in pfdhfr/pfdhsp and pfgch1 copy number fluctuated overtime through the study period. Altogether, 14 unique pfdhfr-pdfhps haplotypes collectively containing quadruple to octuple mutations were identified. High variation in pfdhfr-pfdhps haplotypes and a high proportion of pfgch1 multiple copy number (51% (73/146)) were observed on the Thailand-Myanmar border compared to other parts of Thailand. Overall, the prevalence of septuple mutations was observed for pfdhfr-pfdhps haplotypes. In particular, the prevalence of pfdhfr-pfdhps, septuple mutation was observed in the Thailand-Myanmar (50%, 73/146) and Thailand-Cambodia (65%, 26/40) border. In Thailand-Malaysia border, majority of the pfdhfr-pfdhps haplotypes transaction from quadruple (90%, 9/10) to quintuple (65%, 24/37) during 2008-2016. Within the pfdhfr-pfdhps haplotypes, during 2008-2013 the pfdhps A/S436F mutation was observed only in Thailand-Myanmar border (9%, 10/107), while it was not identified later. In general, significant correlation was observed between the prevalence of pfdhfr I164L (ϕ = 0.213, p-value = 0.001) or pfdhps K540E/N (ϕ = 0.399, p-value ≤ 0.001) mutations and pfgch1 gene amplification.

    CONCLUSIONS: Despite withdrawal of SP as anti-malarial treatment for 17 years, the border regions of Thailand continue to display high prevalence of antifolate and anti-sulfonamide resistance markers in falciparum malaria. Significant association between pfgch1 amplification and pfdhfr (I164L) or pfdhps (K540E) resistance markers were observed, suggesting a compensatory mutation.

    Matched MeSH terms: Plasmodium falciparum/drug effects*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links