METHODS: Cone-beam computed tomography (CBCT) images of 211 anterior mandibular teeth were analyzed in sagittal slices to measure the thickness of the facial alveolar bone crest (FAB1) and apex (FAB2), and the lingual alveolar bone crest (LAB1) and apex (LAB2). Tooth angulation was classified as 1°-10°, 11°-20°, and >20° according to the tooth's long axis and alveolar bone wall. Spearman correlation coefficients were used to evaluate correlations between the variables.
RESULTS: FAB1 and LAB1 were predominantly thin (<1 mm) (84.4% and 73.4%, respectively), with the lateral incisors being thinnest. At the apical level, FAB2 and LAB2 were thick in 99.5% and 99.1% of cases, respectively. Significant differences were documented in FAB2 (P=0.004), LAB1 (P=0.001), and LAB2 (P=0.001) of all mandibular teeth. At all apical levels of the inspected teeth, a significant negative correlation existed between TA and FAB2. Meanwhile, TA showed a significant positive correlation with LAB2 of the lateral incisors and canines. These patterns were then divided into class I (thick facial and lingual alveolar bone), class II (facially inclined teeth) with subtype A (1°-10°) and subtype B (11°-20°), and class III (lingually inclined teeth) with subtype A (1°-10°) and subtype B (11°-20°).
CONCLUSIONS: Mandibular anterior teeth have predominantly thin facial and lingual crests, making the lingual bone apical thickness crucial for IIP. Although anchorage can be obtained from lingual bone, tooth angulation and tooth types had an impact on IIP planning. Hence, the new classification based on TA and alveolar bone wall may enable rational clinical planning for IIP treatment.
Methods: Human skeletal muscle myoblast (HSMM) cells were cultured and serial passaging was carried out to obtain young and senescent cells. The cells were then treated with C. vulgaris followed by differentiation induction. The expression of Pax7, MyoD1, Myf5, MEF2C, IGF1R, MYOG, TNNT1, PTEN, and MYH2 genes and miR-133b, miR-206, and miR-486 was determined in untreated and C. vulgaris-treated myoblasts on Days 0, 1, 3, 5, and 7 of differentiation.
Results: The expression of Pax7, MyoD1, Myf5, MEF2C, IGF1R, MYOG, TNNT1, and PTEN in control senescent myoblasts was significantly decreased on Day 0 of differentiation (p<0.05). Treatment with C. vulgaris upregulated Pax7, Myf5, MEF2C, IGF1R, MYOG, and PTEN in senescent myoblasts (p<0.05) and upregulated Pax7 and MYOG in young myoblasts (p<0.05). The expression of MyoD1 and Myf5 in young myoblasts however was significantly decreased on Day 0 of differentiation (p<0.05). During differentiation, the expression of these genes was increased with C. vulgaris treatment. Further analysis on myomiRs expression showed that miR-133b, miR-206, and miR-486 were significantly downregulated in senescent myoblasts on Day 0 of differentiation which was upregulated by C. vulgaris treatment (p<0.05). During differentiation, the expression of miR-133b and miR-206 was significantly increased with C. vulgaris treatment in both young and senescent myoblasts (p<0.05). However, no significant change was observed on the expression of miR-486 with C. vulgaris treatment.
Conclusions: C. vulgaris demonstrated the modulatory effects on the expression of MRFs and myomiRs during proliferation and differentiation of myoblasts in culture. These findings may indicate the beneficial effect of C. vulgaris in muscle regeneration during ageing thus may prevent sarcopenia in the elderly.
Methods: A two-stage observational study was conducted. The LEFS was initially cross-culturally adapted to Malay language through double forward and backward translation. The finalized version of Malay LEFS (M-LEFS) was subsequently validated for both construct validity and criterion validity. Participants (n = 208) with normal lower limb condition and various lower limb conditions completed the M-LEFS.
Results: Reliability of M-LEFS revealed excellent Cronbach's alpha value of 0.98. Construct validity, evaluated using exploratory factor analysis, exhibited good factor loadings (>0.6) of all 20 items. Interestingly, we extracted 2 components which was not reported elsewhere. With a cut-off point of 60, the sensitivity of the scale was 99% and the specificity was 81%.
Conclusions: The M-LEFS had very good psychometric properties among the studied population. Further studies are needed to enhance these preliminary outcomes in Malaysia.