METHODS: The International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) COVID-19 database was queried to include children under 19 years of age admitted to hospital from January 2020 to April 2021 with suspected or confirmed COVID-19 diagnosis. Univariate and multivariable analysis of contributing factors for mortality were assessed by country group (HICs vs LMICs) as defined by the World Bank criteria.
RESULTS: A total of 12 860 children (3819 from 21 HICs and 9041 from 15 LMICs) participated in this study. Of these, 8961 were laboratory-confirmed and 3899 suspected COVID-19 cases. About 52% of LMICs children were black, and more than 40% were infants and adolescent. Overall in-hospital mortality rate (95% CI) was 3.3% [=(3.0% to 3.6%), higher in LMICs than HICs (4.0% (3.6% to 4.4%) and 1.7% (1.3% to 2.1%), respectively). There were significant differences between country income groups in intervention profile, with higher use of antibiotics, antivirals, corticosteroids, prone positioning, high flow nasal cannula, non-invasive and invasive mechanical ventilation in HICs. Out of the 439 mechanically ventilated children, mortality occurred in 106 (24.1%) subjects, which was higher in LMICs than HICs (89 (43.6%) vs 17 (7.2%) respectively). Pre-existing infectious comorbidities (tuberculosis and HIV) and some complications (bacterial pneumonia, acute respiratory distress syndrome and myocarditis) were significantly higher in LMICs compared with HICs. On multivariable analysis, LMIC as country income group was associated with increased risk of mortality (adjusted HR 4.73 (3.16 to 7.10)).
CONCLUSION: Mortality and morbidities were higher in LMICs than HICs, and it may be attributable to differences in patient demographics, complications and access to supportive and treatment modalities.
OBJECTIVES: We conducted a scoping review to characterize the early impact of COVID-19 on HIV, tuberculosis, malaria, sexual and reproductive health, and malnutrition.
METHODS: A scoping literature review was completed using searches of PubMed and preprint servers (medRxiv/bioRxiv) from November 1st, 2019 to October 31st, 2020, using Medical Subject Headings (MeSH) terms related to SARS-CoV-2 or COVID-19 and HIV, tuberculosis, malaria, sexual and reproductive health, and malnutrition. Empiric studies reporting original data collection or mathematical models were included, and available data synthesized by region. Studies were excluded if they were not written in English.
RESULTS: A total of 1604 published papers and 205 preprints were retrieved in the search. Overall, 8.0% (129/1604) of published studies and 10.2% (21/205) of preprints met the inclusion criteria and were included in this review: 7.3% (68/931) on HIV, 7.1% (24/339) on tuberculosis, 11.6% (26/224) on malaria, 7.8% (19/183) on sexual and reproductive health, and 9.8% (13/132) on malnutrition. Thematic results were similar across competing health risks, with substantial indirect effects of the COVID-19 pandemic and response on diagnostic, prevention, and treatment services for HIV, tuberculosis, malaria, sexual and reproductive health, and malnutrition.
DISCUSSION: COVID-19 emerged in the context of existing public health threats that result in millions of deaths every year. Thus, effectively responding to COVID-19 while minimizing the negative impacts of COVID-19 necessitates innovation and integration of existing programs that are often siloed across health systems. Inequities have been a consistent driver of existing health threats; COVID-19 has worsened disparities, reinforcing the need for programs that address structural risks. The data reviewed here suggest that effective strengthening of health systems should include investment and planning focused on ensuring the continuity of care for both rapidly emergent and existing public health threats.
Methods: The genomes of 24 MTBC isolated from sputum and pus samples were sequenced. The phenotypic drug susceptibility testing (DST) of the isolates was determined for ten anti-TB drugs. Bioinformatic analysis comprising genome assembly and annotation and single-nucleotide polymorphism (SNP) analysis in genes associated with resistance to the ten anti-TB drugs were done on each sequenced genome.
Results: The draft assemblies covered an average of 97% of the expected genome size. Eleven isolates were aligned to the Indo-Oceanic lineage, eight were East-Asian lineage, three were East African-Indian lineage, and one was of Euro-American and Bovis lineages, respectively. Twelve of the 24 MTBC isolates were phenotypically MDR M. tuberculosis: one is polyresistance and another one is monoresistance. Twenty-six SNPs across nine genes associated with resistance toward ten anti-TB drugs were detected where some of the mutations were found in isolates that were previously reported as pan-susceptible using DST. A haplotype consisting of 65 variants was also found among the MTBC isolates with drug-resistance traits.
Conclusions: This study is the first effort done in Malaysia to utilize 24 genomes of the local clinical MTBC isolates. The high-resolution molecular epidemiological data obtained provide valuable insights into the mechanistic and epidemiological qualities of TB within the vicinity of Southeast Asia.