Displaying publications 61 - 80 of 307 in total

Abstract:
Sort:
  1. Taharuddin NH, Jumaidin R, Mansor MR, Hazrati KZ, Hafila KZ, Md Yusof FA
    Int J Biol Macromol, 2024 Oct;277(Pt 1):133852.
    PMID: 39025171 DOI: 10.1016/j.ijbiomac.2024.133852
    The potential of Hylocereus polyrhizus peel (HPP) as a new eco-friendly reinforcement for thermoplastic sago starch/agar composite (TPSS/agar) was investigated. The integration of HPP into TPSS/agar composite aimed to enhance its mechanical and thermal characteristics. The study employed Fourier transform-infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), and Differential Scanning Calorimetry (DSC), as well as mechanical, physical properties and soil burial testing to analyse the composites. The results showed a favourable miscibility between the matrix and filler, while at higher concentrations of HPP, the starch granules became more visible. The tensile and impact properties of the composites improved significantly after incorporating HPP at 20 wt%, with values of 12.73 MPa and 1.87 kJ/m2, respectively. The glass transition temperature (Tg) and initial decomposition temperature (Ton) decreased with the addition of HPP. The density of the composites reduced from 1.51 ± 0.01 to 1.26 ± 0.01 g/cm3 as the HPP amount increased. The environmental properties indicated that the composites can be composted, with weight loss accelerating from 35 to 60 % and 61 to 91 % by the addition of HPP in 2- and 4-weeks' time, respectively. The study demonstrates the potential of TPSS/agar/HPP composites as eco-friendly materials for various applications.
    Matched MeSH terms: Tensile Strength
  2. Xu X, Deng S, Essawy H, Lee SH, Lum WC, Zhou X, et al.
    Int J Biol Macromol, 2024 Oct;277(Pt 1):133784.
    PMID: 39084972 DOI: 10.1016/j.ijbiomac.2024.133784
    In this study, various chitosan-based films such as chitosan (C), chitosan-condensed tannin (CT), chitosan-casein (CC), and chitosan-casein-condensed tannin (CCT) films were prepared for the purpose of food packaging. In order to improve the hydrophobicity of these films, carnauba wax was blended into CCT to produce CCTW film. Properties such as morphology, UV resistance, water solubility, barrier performance, tensile strength, antioxidant, antibacterial and its performance as food packaging were evaluated. Compared with other chitosan-based films, CCTW films exhibited higher UV resistance, tensile strength, thermal stability and hydrophobicity. The addition of both condensed tannin and carnauba wax has significantly decreased the water vapor and oxygen permeability of the CCTW films. The CCTW films were proved capable of repelling most daily consuming liquids. Besides, CCTW films displayed outstanding free radical scavenging rate and antibacterial properties. Meanwhile, bananas wrapped with CCTW films remained fresh for seven days without any mold growth and outperformed other types of films. Apart from that, the CCTW films also showed biodegradable characteristics after exposure to Penicillium sp. These distinguished characteristics made the CCTW films a promising packaging material for long-term food storage.
    Matched MeSH terms: Tensile Strength
  3. Mirjalili F, Chuah L, Salahi E
    ScientificWorldJournal, 2014;2014:718765.
    PMID: 24688421 DOI: 10.1155/2014/718765
    A nanocomposite containing polypropylene (PP) and nano α-Al2O3 particles was prepared using a Haake internal mixer. Mechanical tests, such as tensile and flexural tests, showed that mechanical properties of the composite were enhanced by addition of nano α-Al2O3 particles and dispersant agent to the polymer. Tensile strength was approximately ∼ 16% higher than pure PP by increasing the nano α-Al2O3 loading from 1 to 4 wt% into the PP matrix. The results of flexural analysis indicated that the maximum values of flexural strength and flexural modulus for nanocomposite without dispersant were 50.5 and 1954 MPa and for nanocomposite with dispersant were 55.88 MPa and 2818 MPa, respectively. However, higher concentration of nano α-Al2O3 loading resulted in reduction of those mechanical properties that could be due to agglomeration of nano α-Al2O3 particles. Transmission and scanning electron microscopic observations of the nanocomposites also showed that fracture surface became rougher by increasing the content of filler loading from 1 to 4% wt.
    Matched MeSH terms: Tensile Strength
  4. Siyamak S, Ibrahim NA, Abdolmohammadi S, Yunus WM, Rahman MZ
    Int J Mol Sci, 2012;13(2):1327-46.
    PMID: 22408394 DOI: 10.3390/ijms13021327
    A new class of biocomposites based on oil palm empty fruit bunch fiber and poly(butylene adipate-co-terephthalate) (PBAT), which is a biodegradable aliphatic aromatic co-polyester, were prepared using melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 wt% and characterized. Chemical treatment of oil palm empty fruit bunch (EFB) fiber was successfully done by grafting succinic anhydride (SAH) onto the EFB fiber surface, and the modified fibers were obtained in two levels of grafting (low and high weight percentage gain, WPG) after 5 and 6 h of grafting. The FTIR characterization showed evidence of successful fiber esterification. The results showed that 40 wt% of fiber loading improved the tensile properties of the biocomposite. The effects of EFB fiber chemical treatments and various organic initiators content on mechanical and thermal properties and water absorption of PBAT/EFB 60/40 wt% biocomposites were also examined. The SAH-g-EFB fiber at low WPG in presence of 1 wt% of dicumyl peroxide (DCP) initiator was found to significantly enhance the tensile and flexural properties as well as water resistance of biocomposite (up to 24%) compared with those of untreated fiber reinforced composites. The thermal behavior of the composites was evaluated from thermogravimetric analysis (TGA)/differential thermogravimetric (DTG) thermograms. It was observed that, the chemical treatment has marginally improved the biocomposites' thermal stability in presence of 1 wt% of dicumyl peroxide at the low WPG level of grafting. The improved fiber-matrix surface enhancement in the chemically treated biocomposite was confirmed by SEM analysis of the tensile fractured specimens.
    Matched MeSH terms: Tensile Strength
  5. Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    Carbohydr Polym, 2016 08 01;146:36-45.
    PMID: 27112848 DOI: 10.1016/j.carbpol.2016.03.051
    The development and characterization of environmentally friendly bilayer films from sugar palm starch (SPS) and poly(lactic acid) (PLA) were conducted in this study. The SPS-PLA bilayer films and their individual components were characterized for their physical, mechanical, thermal and water barrier properties. Addition of 50% PLA layer onto 50% SPS layer (SPS50-PLA50) increased the tensile strength of neat SPS film from 7.74 to 13.65MPa but reduced their elongation at break from 46.66 to 15.53%. The incorporation of PLA layer significantly reduced the water vapor permeability as well as the water uptake and solubility of bilayer films which was attributed to the hydrophobic characteristic of the PLA layer. Furthermore, scanning electron microscopy (SEM) image of SPS50-PLA50 revealed lack of strong interfacial adhesion between the SPS and PLA. Overall, the incorporation of PLA layer onto SPS films enhances the suitability of SPS based films for food packaging.
    Matched MeSH terms: Tensile Strength
  6. Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    Int J Biol Macromol, 2016 Aug;89:575-81.
    PMID: 27177458 DOI: 10.1016/j.ijbiomac.2016.05.028
    The aim of this work is to study the behavior of biodegradable sugar palm starch (SPS) based thermoplastic containing agar in the range of 10-40wt%. The thermoplastics were melt-mixed and then hot pressed at 140°C for 10min. SEM investigation showed good miscibility between SPS and agar. FT-IR analysis confirmed that SPS and agar were compatible and inter-molecular hydrogen bonds existed between them. Incorporation of agar increased the thermoplastic starch tensile properties (Young's modulus and tensile strength). The thermal stability and moisture uptake increased with increasing agar content. The present work shows that starch-based thermoplastics with 30wt% agar content have the highest tensile strength. Higher content of agar (40wt%) resulted to more rough cleavage fracture and slight decrease in the tensile strength. In conclusion, the addition of agar improved the thermal and tensile properties of thermoplastic SPS which widened the potential application of this eco-friendly material. The most promising applications for this eco-friendly material are short-life products such as packaging, container, tray, etc.
    Matched MeSH terms: Tensile Strength
  7. Haafiz MK, Hassan A, Khalil HP, Fazita MR, Islam MS, Inuwa IM, et al.
    Int J Biol Macromol, 2016 Apr;85:370-8.
    PMID: 26772914 DOI: 10.1016/j.ijbiomac.2016.01.004
    In this work, polylactic acid (PLA) reinforced cellulose nanowhiskers (CNW) were prepared through solution casting technique. The CNW was first isolated from oil palm empty fruit bunch microcrystalline cellulose (OPEFB-MCC) by using 64% H2SO4 and was designated as CNW-S. The optical microscopy revealed that the large particle of OPEFB-MCC has been broken down by the hydrolysis treatment. The atomic force microscopy confirmed that the CNW-S obtained is in nanoscale dimension and appeared in individual rod-like character. The produced CNW-S was then incorporated with PLA at 1, 3, and 5 parts per hundred (phr) resins for the PLA-CNW-S nanocomposite production. The synthesized nanocomposites were then characterized by a mean of tensile properties and thermal stability. Interestingly to note that incorporating of 3 phr/CNW-S in PLA improved the tensile strength by 61%. Also, CNW-S loading showed a positive impact on the Young's modulus of PLA. The elongation at break (Eb) of nanocomposites, however, decreased with the addition of CNW-S. Field emission scanning electron microscopy and transmission electron microscopy revealed that the CNW-S dispersed well in PLA at lower filler loading before it started to agglomerate at higher CNW-S loading (5phr). The DSC analysis of the nanocomposites obtained showed that Tg,Tcc and Tm values of PLA were improved with CNW-S loading. The TGA analysis however, revealed that incopreated CNW-S in PLA effect the thermal stability (T10,T50 and Tmax) of nanocomposite, where it decrease linearly with CNW-S loading.
    Matched MeSH terms: Tensile Strength
  8. Ibrahim WM, McCabe JF
    J Nihon Univ Sch Dent, 1993 Dec;35(4):225-9.
    PMID: 8158281
    The mean strength that has traditionally been taken as a measurement of the strength of a material does not reflect the true strength, and therefore it cannot be used as a design parameter. This explains why many brittle materials fail at unpredictable stress, either below or above the mean strength. By using Weibull statistics, the prediction and assessment of strength can be made more sensibly. The performance of a material can be predicted by considering a stress at a lower level of failure probability.
    Matched MeSH terms: Tensile Strength
  9. Wan Abas WA
    Biomed Mater Eng, 1995;5(2):59-63.
    PMID: 7655319
    The response of human skin to "stress relaxation" tests at low loads in vitro was investigated. A number of behaviours, other than those already well established and documented, were observed. The significant behaviours are pure recovery and relaxation-recovery. Other behaviours observed are temporary stress recovery during the relaxation process, and momentary sudden non-linear drop in stress value followed by a second relaxation. The pure recovery and relaxation-recovery responses are repeatable. The latter represents the transitional response between the well-known behaviour of stress relaxation and the behaviour of stress recovery.
    Matched MeSH terms: Tensile Strength
  10. Abazari S, Shamsipur A, Bakhsheshi-Rad HR, Ismail AF, Sharif S, Razzaghi M, et al.
    Materials (Basel), 2020 Oct 04;13(19).
    PMID: 33020427 DOI: 10.3390/ma13194421
    In recent years considerable attention has been attracted to magnesium because of its light weight, high specific strength, and ease of recycling. Because of the growing demand for lightweight materials in aerospace, medical and automotive industries, magnesium-based metal matrix nanocomposites (MMNCs) reinforced with ceramic nanometer-sized particles, graphene nanoplatelets (GNPs) or carbon nanotubes (CNTs) were developed. CNTs have excellent material characteristics like low density, high tensile strength, high ratio of surface-to-volume, and high thermal conductivity that makes them attractive to use as reinforcements to fabricate high-performance, and high-strength metal-matrix composites (MMCs). Reinforcing magnesium (Mg) using small amounts of CNTs can improve the mechanical and physical properties in the fabricated lightweight and high-performance nanocomposite. Nevertheless, the incorporation of CNTs into a Mg-based matrix faces some challenges, and a uniform distribution is dependent on the parameters of the fabricating process. The characteristics of a CNTs reinforced composite are related to the uniform distribution, weight percent, and length of the CNTs, as well as the interfacial bonding and alignment between CNTs reinforcement and the Mg-based matrix. In this review article, the recent findings in the fabricating methods, characterization of the composite's properties, and application of Mg-based composites reinforced with CNTs are studied. These include the strategies of fabricating CNT-reinforced Mg-based composites, mechanical responses, and corrosion behaviors. The present review aims to investigate and conclude the most relevant studies conducted in the field of Mg/CNTs composites. Strategies to conquer complicated challenges are suggested and potential fields of Mg/CNTs composites as upcoming structural material regarding functional requirements in aerospace, medical and automotive industries are particularly presented.
    Matched MeSH terms: Tensile Strength
  11. Ekarizan Shaffie1, Ahmad Kamil Arshad, Ramadhansyah Putra Jaya, Khairil Azman Masri, Wardati Hashim
    MyJurnal
    Moisture susceptibiltiy is one of the common types of pavement failure found in asphaltic pavements.
    Climatic factor such as temperature and moisture has a profound effect on the durability of hot mix
    asphalt pavements. Couple with high traffic loads/stresses made stripping of pavement materials
    inevitable. Thus, it has become necessary to improve the efficiency of the design of hot mix asphalt
    (HMA) for better performance and safe riding comfort. This study investigates and discusses the findings
    on the stripping performance of dense graded Superpave mixes using two type of binder; un-modified
    binder and rubber polymer modified binder (RPM) using Superpave mix design (AASHTO TP4)
    procedure. The RPM binder consists of 4% of both rubber crumb and EVA polymer. Modified Lottman
    and Resilient Modulus tests were used to evaluate the stripping performance in these mixtures and this
    study also documents the effect of different temperature on tensile strength ratio (TSR) and resilient
    modulus ratio (RMR) on the HMA mixtures. Experimental evidences show that the RPM binder mixes
    were found to have significantly improved the resistance to moisture damage compared to unmodified
    binder mixtures. The RPM binder application may able to alleviate problems related to aggregate
    stripping and potholes on our road. Statistical analysis showed good correlation between resilient
    modulus and tensile strength ratio.
    Matched MeSH terms: Tensile Strength
  12. Yang J, Ching YC, Chuah CH, Liou NS
    Polymers (Basel), 2020 Dec 29;13(1).
    PMID: 33383626 DOI: 10.3390/polym13010094
    This study examined the development of starch/oil palm empty fruit bunch-based bioplastic composites reinforced with either epoxidized palm oil (EPO) or epoxidized soybean oil (ESO), at various concentrations, in order to improve the mechanical and water-resistance properties of the bio-composites. The SEM micrographs showed that low content (0.75 wt%) of epoxidized oils (EOs), especially ESO, improved the compatibility of the composites, while high content (3 wt%) of EO induced many voids. The melting temperature of the composites was increased by the incorporation of both EOs. Thermal stability of the bioplastics was increased by the introduction of ESO. Low contents of EO led to a huge enhancement of tensile strength, while higher contents of EO showed a negative effect, due to the phase separation. The tensile strength increased from 0.83 MPa of the control sample to 3.92 and 5.42 MPa for the composites with 1.5 wt% EPO and 0.75 wt% ESO, respectively. EOs reduced the composites' water uptake and solubility but increased the water vapor permeability. Overall, the reinforcing effect of ESO was better than EPO. These results suggested that both EOs can be utilized as modifiers to prepare starch/empty-fruit-bunch-based bioplastic composites with enhanced properties.
    Matched MeSH terms: Tensile Strength
  13. Zakaria Razak, Abu Bakar Sulong, Norhamidi Muhamad, Che Hassan Che Haron, Mohd Khairol Fadzly Md Radzi, Dulina Tholibon, et al.
    Sains Malaysiana, 2018;47:1285-1291.
    Composite materials have increasingly become crucial in manufacturing engineering products and producing commodity
    materials in the major industries including; automotive, aerospace, marine, construction, agriculture and health science.
    However, several improvements regarding the strength, dimensional stability and the cost of production are required.
    In this study, composite of Kenaf, multi-wall carbon nanotube (MWCNT) and polypropylene (PP) with maleic anhydridegrafted
    polypropylene (MAPP) are examined. The results highlight that increasing MAPP loading, in turn, increases the
    value of the mechanical properties. The composites are produced by blending kenaf/MWCNT/PP using a Sigma blade
    mixer and injection moulding. Injection moulding is a significant operation used to produce plastic products. In the
    study, Kenaf core fibre was mixed with MWCNT and polypropylene, in addition to MAPP. The MAPP is added by applying
    different percentage (1, 2, 3 and 4 wt. %) during the blending process. The main objective of the study was to analyse the
    effects of MAPP concentrations on the mechanical properties of the Kenaf/MWCNT/PP composite. The results of the study
    established that MAPP 3 wt. % concentration with MWCNT 3 wt. % loading and Kenaf 30 wt. % filler provide optimum
    results for the composites. There was approximately, a 21% enhance in tensile strength of Kenaf 30 wt. %/MWCNT, 3 wt.
    %/MAPP, 3 wt. %/PP observed compared to the (without) MAPP composite. The composites with coupling agent stimulate
    better filler dispersion between Kenaf, MWCNT and PP observed using a scanning electron microscope (SEM) and fieldemission
    scanning electron microscope (FESEM).
    Matched MeSH terms: Tensile Strength
  14. Shafiq N, Kumar R, Zahid M, Tufail RF
    Materials (Basel), 2019 Jul 17;12(14).
    PMID: 31319615 DOI: 10.3390/ma12142291
    This paper discussed the effects of modified metakaolin (MK) with nano-silica (NS) on the mechanical properties and durability of concrete. In the first phase, trial mixes of concrete were prepared for achieving the desired value of the 28 days compressive strength, and the charge passed in rapid chloride permeability test (RCPT). In the second phase, statistical analysis was performed on the experimental results using the response surface method (RSM). The RSM was applied for optimizing the mix proportions for the required performance by exploiting the relationship between the mix characteristics and the corresponding test results. A blend of 10% MK + 1% NS as part of cement replacement exhibited the highest mechanical properties and durability characteristics of concrete; concrete mix showed that the 28-days compressive strength (CS) was 103 MPa, which was 15% greater than the CS of the control mix without MK or NS. The same mix showed more than 40% higher flexural and split-tensile strength than the control mix; also it resulted in a reduction of 73% in the rapid chloride permeability value. ANOVA technique was used for optimizing the nano-silica and metakaolin content for achieving maximum compressive strength and minimum RCPT value. Statistical analysis using ANOVA technique showed that the maximum compressive strength and lowest RCPT value could be achieved with a blend of 10% MK and 1.55% NS.
    Matched MeSH terms: Tensile Strength
  15. Hashim UR, Jumahat A, Jawaid M, Dungani R, Alamery S
    Polymers (Basel), 2020 Nov 06;12(11).
    PMID: 33172162 DOI: 10.3390/polym12112621
    This work aims to give insight on the effect of accelerated weathering, i.e., the combination of ultraviolet (UV) exposure and water spraying, on the visual and mechanical properties of basalt fiber reinforced polymer (BFRP) composites. The solvent exchange method, sonication and high shear milling technique were used to prepare the nanocomposite laminates. Three types of laminates were fabricated, i.e., unmodified BFRP, nanosilica modified BFRP and graphene nanoplatelet (GNP) modified BFRP composites with the total fiber loading of 45 wt.%. Glass fiber reinforced polymer (GFRP) laminate was also prepared for performance comparison purposes between the natural and synthetic fibers. The laminates were exposed to UV with a total weathering condition of 504 h using a Quantum-UV accelerated weathering tester. The weathering condition cycle was set at 8 h 60 °C UV exposure and 4 h 50 °C condensation. The discoloration visual inspection on the tested specimen was observed under the optical microscope. The obtained results showed that the UV exposure and water absorption caused severe discoloration of the laminates due to photo-oxidation reaction. The effect of weathering conditions on tensile and flexural properties of unmodified BFRP composites indicated that the UV exposure and water absorption caused reduction by 12% in tensile strength and by 7% in flexural strength. It is also found that the reduction in tensile and flexural properties of nanomodified BFRP composites was smaller than the unmodified system. It concluded from this work, that the mineral based composites (i.e., BFRP) has high potential for structural applications owing to its better properties than synthetic based composites (i.e., GFRP).
    Matched MeSH terms: Tensile Strength
  16. Murali G, Amran M, Fediuk R, Vatin N, Raman SN, Maithreyi G, et al.
    Materials (Basel), 2020 Dec 11;13(24).
    PMID: 33322254 DOI: 10.3390/ma13245648
    Ferrocement panels, while offering various benefits, do not cover instances of low and moderated velocity impact. To address this problem and to enhance the impact strength against low-velocity impact, a fibrous ferrocement panel is proposed and investigated. This study aims to assess the flexural and low-velocity impact response of simply supported ferrocement panels reinforced with expanded wire mesh (EWM) and steel fibers. The experimental program covered 12 different ferrocement panel prototypes and was tested against a three-point flexural load and falling mass impact test. The ferrocement panel system comprises mortar reinforced with 1% and 2% dosage of steel fibers and an EWM arranged in 1, 2, and 3 layers. For mortar preparation, a water-cement (w/c) ratio of 0.4 was maintained and all panels were cured in water for 28 days. The primary endpoints of the investigation are first crack and ultimate load capacity, deflection corresponding to first crack and ultimate load, ductility index, flexural strength, crack width at ultimate load, a number of impacts needed to induce crack commencement and failure, ductility ratio, and failure mode. The finding revealed that the three-layers of EWM inclusion and steel fibers resulted in an additional impact resistance improvement at cracking and failure stages of ferrocement panels. With superior ultimate load capacity, flexural strength, crack resistance, impact resistance, and ductile response, as witnessed in the experiment program, ferrocement panel can be a positive choice for many construction applications subjected to repeated low-velocity impacts.
    Matched MeSH terms: Tensile Strength
  17. Kee SY, Munusamy Y, Ong KS, Lai KC
    Polymers (Basel), 2017 Jun 18;9(6).
    PMID: 30970908 DOI: 10.3390/polym9060230
    In this study, reduced graphene oxide (RGO)/polymethyl methacrylate (PMMA) nanocomposites were prepared by employing in situ polymerization and solution blending methods. In terms of mechanical properties, RGO loading increased the Young's modulus but decreased the elongation at break for RGO/PMMA nanocomposites. Tensile strength for solution blended RGO/PMMA nanocomposites increased after adding 0.5 wt % RGO, which was attributed to the good dispersion of RGO in the nanocomposites as evidenced from SEM and TEM. Solar energy conversion efficiency measurement results showed that the optimum concentration of RGO in the RGO/PMMA nanocomposites was found to be 1.0 wt % in order to achieve the maximum solar energy conversion efficiency of 25%. In the present study, the solution blended nanocomposites exhibited better overall properties than in situ polymerized nanocomposites owing to the better dispersion of RGO in solution blending. These findings would contribute to future work in search of higher conversion efficiency using nanocomposites.
    Matched MeSH terms: Tensile Strength
  18. Ahmed T, Ya HH, Khan R, Hidayat Syah Lubis AM, Mahadzir S
    Materials (Basel), 2020 Jul 27;13(15).
    PMID: 32726965 DOI: 10.3390/ma13153333
    Polymeric materials such as High density polyethylene(HDPE) are ductile in nature, having very low strength. In order to improve strength by non-treated rigid fillers, polymeric materials become extremely brittle. Therefore, this work focuses on achieving pseudo-ductility (high strength and ductility) by using a combination of rigid filler particles (CaCO3 and bentonite) instead of a single non-treated rigid filler particle. The results of all tensile-tested (D638 type i) samples signify that the microstructural features and surface properties of rigid nano fillers can render the required pseudo-ductility. The maximum value of tensile strength achieved is 120% of the virgin HDPE, and the value of elongation is retained by 100%. Furthermore, the morphological and fractographic analysis revealed that surfactants are not always going to obtain polymer-filler bonding, but the synergistic effect of filler particles can carry out sufficient bonding for stress transfer. Moreover, pseudo-ductility was achieved by a combination of rigid fillers (bentonite and CaCO3) when the content of bentonite dominated as compared to CaCO3. Thus, the achievement of pseudo-ductility by the synergistic effect of rigid particles is the significance of this study. Secondly, this combination of filler particles acted as an alternative for the application of surfactant and compatibilizer so that adverse effect on mechanical properties can be avoided.
    Matched MeSH terms: Tensile Strength
  19. Ahmad Saffian H, Talib MA, Lee SH, Md Tahir P, Lee CH, Ariffin H, et al.
    Polymers (Basel), 2020 Aug 15;12(8).
    PMID: 32824275 DOI: 10.3390/polym12081833
    Mechanical strength, thermal conductivity and electrical breakdown of polypropylene/lignin/kenaf core fiber (PP/L/KCF) composite were studied. PP/L, PP/KCF and PP/L/KCF composites with different fiber and lignin loading was prepared using a compounding process. Pure PP was served as control. The results revealed that tensile and flexural properties of the PP/L/KCF was retained after addition of lignin and kenaf core fibers. Thermal stability of the PP composites improved compared to pure PP polymer. As for thermal conductivity, no significant difference was observed between PP composites and pure PP. However, PP/L/KCF composite has higher thermal diffusivity. All the PP composites produced are good insulating materials that are suitable for building. All PP composites passed withstand voltage test in air and oil state as stipulated in IEC 60641-3 except PP/L in oil state. SEM micrograph showed that better interaction and adhesion between polymer matrix, lignin and kenaf core fibers was observed and reflected on the better tensile strength recorded in PP/L/KCF composite. This study has successfully filled the gap of knowledge on using lignin and kenaf fibers as PP insulator composite materials. Therefore, it can be concluded that PP/Lignin/KCF has high potential as an insulating material.
    Matched MeSH terms: Tensile Strength
  20. Hashim MKR, Abdul Majid MS, Jamir MRM, Kasim FH, Sultan MTH
    Polymers (Basel), 2021 Jan 31;13(3).
    PMID: 33572609 DOI: 10.3390/polym13030455
    In this paper, the effects of stacking sequence and ply orientation on the mechanical properties of pineapple leaf fibre (PALF)/carbon hybrid laminate composites were investigated. The hybrid laminates were fabricated using a vacuum infusion technique in which the stacking sequences and ply orientations were varied, which were divided into the categories of cross-ply symmetric, angle-ply symmetric, and symmetric quasi-isotropic. The results of tensile and flexural tests showed that the laminate with interior carbon plies and ply orientation [0°, 90°] exhibited the highest tensile strength (187.67 MPa) and modulus (5.23 GPa). However, the highest flexural strength (289.46 MPa) and modulus (4.82 GPa) were recorded for the laminate with exterior carbon plies and the same ply orientation. The fracture behaviour of the laminates was determined by using scanning electron microscopy, and the results showed that failure usually initiated at the weakest PALF layer. The failure modes included fibre pull-out, fibre breaking, matrix crack, debonding, and delamination.
    Matched MeSH terms: Tensile Strength
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links