Displaying publications 61 - 72 of 72 in total

Abstract:
Sort:
  1. Wu JY, Ooi CW, Song CP, Wang CY, Liu BL, Lin GY, et al.
    Carbohydr Polym, 2021 Jun 15;262:117910.
    PMID: 33838797 DOI: 10.1016/j.carbpol.2021.117910
    N-[(2-hydroxyl-3-trimethylammonium) propyl] chitosan chloride (HTCC), which is a type of chitosan derivative with quaternary ammonium groups, possesses a higher antibacterial activity as compared to the pristine chitosan. The nanofiber membranes made of HTCC are attractive for applications demanding for antibacterial function. However, the hydrophilic nature of HTCC makes it unsuitable for electrospinning of nanofibers. Hence, biodegradable polyvinyl alcohol (PVA) was proposed as an additive to improve the electrospinnability of HTCC. In this work, PVA/HTCC nanofiber membrane was crosslinked with the blocked diisocyanate (BI) to enhance the stability of nanofiber membrane in water. Microbiological assessments showed that the PVA/HTCC/BI nanofiber membranes possessed a good antibacterial efficacy (∼100 %) against E. coli. Moreover, the biocompatibility of PVA/HTCC/BI nanofiber membrane was proven by the cytotoxicity test on mouse fibroblasts. These promising results indicated that the PVA/HTCC/BI nanofiber membrane can be a promising material for food packaging and as a potential wound dressing for skin regeneration.
    Matched MeSH terms: Food Packaging/methods
  2. Radakisnin R, Abdul Majid MS, Jamir MRM, Jawaid M, Sultan MTH, Mat Tahir MF
    Materials (Basel), 2020 Sep 17;13(18).
    PMID: 32957438 DOI: 10.3390/ma13184125
    The purpose of the study is to investigate the utilisation of Napier fiber (Pennisetum purpureum) as a source for the fabrication of cellulose nanofibers (CNF). In this study, cellulose nanofibers (CNF) from Napier fiber were isolated via ball-milling assisted by acid hydrolysis. Acid hydrolysis with different molarities (1.0, 3.8 and 5.6 M) was performed efficiently facilitate cellulose fiber size reduction. The resulting CNFs were characterised through Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), particle size analyser (PSA), field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The FTIR results demonstrated that there were no obvious changes observed between the spectra of the CNFs with different molarities of acid hydrolysis. With 5.6 M acid hydrolysis, the XRD analysis displayed the highest degree of CNF crystallinity at 70.67%. In a thermal analysis by TGA and DTG, cellulose nanofiber with 5.6 M acid hydrolysis tended to produce cellulose nanofibers with higher thermal stability. As evidenced by the structural morphologies, a fibrous network nanostructure was obtained under TEM and AFM analysis, while a compact structure was observed under FESEM analysis. In conclusion, the isolated CNFs from Napier-derived cellulose are expected to yield potential to be used as a suitable source for nanocomposite production in various applications, including pharmaceutical, food packaging and biomedical fields.
    Matched MeSH terms: Food Packaging
  3. Zainudin MAM, Poojary MM, Jongberg S, Lund MN
    Food Chem, 2019 Nov 30;299:125132.
    PMID: 31299519 DOI: 10.1016/j.foodchem.2019.125132
    Protein oxidation of beef patties stored in high oxygen modified atmosphere packaging for 9 days was investigated. Meat was either stored in the dark, under light, or in the dark with addition of FeCl2/H2O2/myoglobin (forced oxidation). SDS-PAGE analysis showed high degree of protein polymerization for meat exposed to light, compared to the other samples. Light exposure induced reducible (disulfide) and non-reducible cross-links, while mainly disulfides were formed in meat stored in the dark. Light exposure was responsible for 58% loss of free thiols (Cys residues). No significant loss of other amino acid residues was observed and none of the most common oxidation products of tryptophan, tyrosine, and phenylalanine were detected. Intrinsic fluorescence measurements of tryptophan showed 27% loss in samples exposed to light, which was ascribed to loss of protein solubility via protein polymerization rather than tryptophan oxidation. Protein carbonyls were mainly detected in forced oxidized samples at Day 0.
    Matched MeSH terms: Food Packaging
  4. Hazrati KZ, Sapuan SM, Zuhri MYM, Jumaidin R
    Polymers (Basel), 2021 Feb 15;13(4).
    PMID: 33672030 DOI: 10.3390/polym13040584
    This study was driven by the stringent environmental legislation concerning the consumption and utilization of eco-friendly materials. Within this context, this paper aimed to examine the characteristics of starch and fibres from the Dioscorea hispida tuber plant to explore their potential as renewable materials. The extraction of the Dioscorea hispida starch and Dioscorea hispida fibres was carried out and the chemical composition, physical, thermal, morphological properties, and crystallinity were studied. The chemical composition investigations revealed that the Dioscorea hispida starch (DHS) has a low moisture t (9.45%) and starch content (37.62%) compared to cassava, corn, sugar palm, and arrowroot starches. Meanwhile, the Dioscorea hispida fibres (DHF) are significantly low in hemicellulose (4.36%), cellulose (5.63%), and lignin (2.79%) compared to cassava, corn hull and sugar palm. In this investigation the chemical, physical, morphological and thermal properties of the Dioscorea hispida fibre and Dioscorea hispida starch were examined by chemical composition investigation, scanning electron microscopy (SEM), particle size distribution, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and Fourier transform infrared (FTIR), respectively. It was found that Dioscorea hispida waste is promising alternative biomass and sustainable material with excellent potential as a renewable filler material for food packaging applications.
    Matched MeSH terms: Food Packaging
  5. Tan LF, Elaine E, Pui LP, Nyam KL, Yusof YA
    Acta Sci Pol Technol Aliment, 2021 1 16;20(1):55-66.
    PMID: 33449520 DOI: 10.17306/J.AFS.0771
    BACKGROUND: Biodegradable food packaging has improved in quality with recent research incorporating natural extracts for functionality purposes. This research aims to develop chitosan film with Chrysanthemum morifolium essential oil to improve the shelf life of fresh raw chicken and beef.

    METHODS: 1.5% (w/v) chitosan films with Chrysanthemum morifolium essential oil (0% to 6% (v/v)) were produced through homogenization, the casting of a film solution in a petri dish and convection drying. The edible film was evaluated in terms of its physical (color, thickness, water vapor permeability), mechanical (puncture strength, tensile strength, elongation at break) and chemical properties (antioxidant assay, Fourier Transform Infrared Spectroscopy (FTIR)).

    RESULTS: With an increasing concentration of Chrysanthemum morifolium in the chitosan film, the test values of physical properties such as tensile strength, puncture force, and elongation at break declined significantly. However, the thickness, water permeability, and color profile (L*, a*, b*) values of the chitosan film increased. Similarly, the scavenging effect of antioxidant assay increased (from 4.97% to 18.63%) with a rise in Chrysanthemum morifolium concentration. 2%, 3%, and 4% of Chrysanthemum morifolium in the chitosan film showed a significant inhibition zone ranging from 2.67 mm to 3.82 mm against Staphylococcus aureus, a spoilage bacterium that is commonly found in chicken and beef products. The storage and pH tests showed that 4% of Chrysanthemum morifolium in the film maintained pH level (safe to consume), and the shelf life was extended from 3 days to 5 days of meat storage.

    CONCLUSIONS: This study demonstrated that the incorporation of 4% (v/v) Chrysanthemum morifolium extract into 1.5% (w/v) chitosan film extends the storage duration of raw meat products noticeably by reducing Staphylococcus aureus activity. Therefore, it increases the quality of the edible film as an environmentally friendly food packaging material so that it can act as a substitute for the use of plastic bags. Future studies will be conducted on improving the tensile strength of the edible film to increase the feasibility of using it in the food industry. In addition, the microstructure and surface morphology of the edible film can be further determined.

    Matched MeSH terms: Food Packaging
  6. Rasheed M, Jawaid M, Parveez B, Hussain Bhat A, Alamery S
    Polymers (Basel), 2021 Feb 01;13(3).
    PMID: 33535490 DOI: 10.3390/polym13030465
    The present study aims to develop a biodegradable polymer blend that is environmentally friendly and has comparable tensile and thermal properties with synthetic plastics. In this work, microcrystalline cellulose (MCC) extracted from bamboo-chips-reinforced poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blend composites were fabricated by melt-mixing at 180 °C and then hot pressing at 180 °C. PBS and MCC (0.5, 1, 1.5 wt%) were added to improve the brittle nature of PLA. Field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), thermogravimetric analysis (TGA), differential thermogravimetry (DTG), differential scanning calorimetry (DSC)), and universal testing machine were used to analyze morphology, crystallinity, physiochemical, thermal, and tensile properties, respectively. The thermal stability of the PLA-PBS blends enhanced on addition of MCC up to 1wt % due to their uniform dispersion in the polymer matrix. Tensile properties declined on addition of PBS and increased with MCC above (0.5 wt%) however except elongation at break increased on addition of PBS then decreased insignificantly on addition of MCC. Thus, PBS and MCC addition in PLA matrix decreases the brittleness, making it a potential contender that could be considered to replace plastics that are used for food packaging.
    Matched MeSH terms: Food Packaging
  7. Siah, W.M., Aminah, A., Ishak, A.
    MyJurnal
    A new patent pending process is proposed in this study to produce edible film directly from seaweed (Kappaphycus alvarezii). Seaweed together with other ingredients has been used to produce the film through casting technique. Physical and mechanical tests were performed on the edible films to examine the thickness, colour, transparency, solubility, tensile strength,
    elongation at break, water permeability rate, oxygen permeability rate and surface morphology. Produced film was transparent, stretchable, sealable and have basic properties as a film for food packaging. This study suggests that the edible film could be used as novel materials in food industry as sachet/pouch/bag for instant coffee, breakfast cereals drinks, seasoning powder,
    candies etc; as wrapper for seasoning cube and chocolate; as interleaf for frozen foods such as burger patties to avoid the patties from sticking together; and also as material for edible logo in bakeries products. Other than that, the edible film also could be used in pharmaceutical industry as functional strips such as oral freshener strips and drug strips. In cosmetic and toiletries industries, the edible film could be used to produce facial mask and bag for pre-portioned detergent. Compared with edible film developed earlier using alginate and carrageenan, film developed in this research used seaweed directly. The developed film reduced the need to extract the alginate and carrageenan, making material preparation easier and cheaper.
    Matched MeSH terms: Food Packaging
  8. Ramakrishnan N, Sharma S, Gupta A, Alashwal BY
    Int J Biol Macromol, 2018 May;111:352-358.
    PMID: 29320725 DOI: 10.1016/j.ijbiomac.2018.01.037
    Plastics have been one of the highly valued materials and it plays an significant role in human's life such as in food packaging and biomedical applications. Bioplastic materials can gradually work as a substitute for various materials based on fossil oil. The issue like sustainability and environmental challenges which occur due to manufacturing and disposal of synthetic plastics can be conquering by bio-based plastics. Feathers are among the most inexpensive abundant, and renewable protein sources. Feathers disposal to the landfills leads to environmental pollutions and it results into wastage of 90% of protein raw material. Keratin is non-burning hydrophilic, and biodegradable due to which it can be applicable in various ways via chemical processing. Main objective of this research is to synthesis bioplastic using keratin from chicken feathers. Extracted keratin solution mixed with different concentration of glycerol (2 to 10%) to produce plastic films. The mixture was stirred under constant magnetic stirring at 60 °C for 5 h. The mixtures are then poured into aluminum weighing boat and dried in an oven at 60 °C for 24 h. The mechanical properties of the samples were tested and the physic-chemical properties of the bioplastic were studied. According to the results, Scanning Electron Microscopy test showed good compatible morphologies without holes, cavity and edge. The difference in chemical composition was analyzed using Fourier transform infrared spectroscopy (FTIR). The samples were also characterized by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-Ray diffraction (XRD) to check the thermal and crystallinity properties. Other than that, bioplastic made up from keratin with 2% of glycerol has the best mechanical and thermal properties. According to biodegradability test, all bioplastic produced are proven biodegradable. Therefore, the results showed possible application of the film as an alternative to fossil oil based materials which are harmful to the environment.
    Matched MeSH terms: Food Packaging
  9. Nawawi WMFBW, Jones M, Murphy RJ, Lee KY, Kontturi E, Bismarck A
    Biomacromolecules, 2020 Jan 13;21(1):30-55.
    PMID: 31592650 DOI: 10.1021/acs.biomac.9b01141
    Greener alternatives to synthetic polymers are constantly being investigated and sought after. Chitin is a natural polysaccharide that gives structural support to crustacean shells, insect exoskeletons, and fungal cell walls. Like cellulose, chitin resides in nanosized structural elements that can be isolated as nanofibers and nanocrystals by various top-down approaches, targeted at disintegrating the native construct. Chitin has, however, been largely overshadowed by cellulose when discussing the materials aspects of the nanosized components. This Perspective presents a thorough overview of chitin-related materials research with an analytical focus on nanocomposites and nanopapers. The red line running through the text emphasizes the use of fungal chitin that represents several advantages over the more popular crustacean sources, particularly in terms of nanofiber isolation from the native matrix. In addition, many β-glucans are preserved in chitin upon its isolation from the fungal matrix, enabling new horizons for various engineering solutions.
    Matched MeSH terms: Food Packaging
  10. Kasapila W, Shaarani SM
    Asia Pac J Clin Nutr, 2011;20(1):1-8.
    PMID: 21393103
    In the globalised world of the 21st century, issues of food and nutrition labelling are of pre-eminent importance. Several international bodies, including the World Health Organisation and World Trade Organisation, are encouraging countries to harmonise their food and nutrition regulations with international standards, guidelines and recommendations such as those for Codex Alimentarius. Through harmonisation, these organisations envisage fewer barriers to trade and freer movement of food products between countries, which would open doors to new markets and opportunities for the food industry. In turn, increased food trade would enhance economic development and allow consumers a greater choice of products. Inevitably, however, embracing harmonisation brings along cost implications and challenges that have to be overcome. Moreover, the harmonisation process is complex and sporadic in light of the tasks that countries have to undertake; for example, updating legislation, strengthening administrative capabilities and establishing analytical laboratories. This review discusses the legislation and regulations that govern food and nutrition labelling in Southeast Asia, and highlights the discrepancies that exist in this regard, their origin and consequences. It also gives an account of the current status of harmonising labelling of pre-packaged foodstuffs in the region and explains the subsequent benefits, challenges and implications for governments, the food industry and consumers.
    Matched MeSH terms: Food Packaging
  11. Kuan CY, Yee-Fung W, Yuen KH, Liong MT
    Crit Rev Food Sci Nutr, 2012;52(1):55-71.
    PMID: 21991990 DOI: 10.1080/10408398.2010.494259
    Nanotechnology is seeing higher propensity in various industries, including food and bioactives. New nanomaterials are constantly being developed from both natural biodegradable polymers of plant and animal origins such as polysaccharides and derivatives, peptides and proteins, lipids and fats, and biocompatible synthetic biopolyester polymers such as polylactic acid (PLA), polyhydroxyalkonoates (PHA), and polycaprolactone (PCL). Applications in food industries include molecular synthesis of new functional food compounds, innovative food packaging, food safety, and security monitoring. The relevance of bioactives includes targeted delivery systems with improved bioavailability using nanostructure vehicles such as association colloids, lipid based nanoencapsulator, nanoemulsions, biopolymeric nanoparticles, nanolaminates, and nanofibers. The extensive use of nanotechnology has led to the need for parallel safety assessment and regulations to protect public health and adverse effects to the environment. This review covers the use of biopolymers in the production of nanomaterials and the propensity of nanotechnology in food and bioactives. The exposure routes of nanoparticles, safety challenges, and measures undertaken to ensure optimal benefits that outweigh detriments are also discussed.
    Matched MeSH terms: Food Packaging
  12. Muthulakshmi L, Rajini N, Nellaiah H, Kathiresan T, Jawaid M, Rajulu AV
    Int J Biol Macromol, 2017 Feb;95:1064-1071.
    PMID: 27984140 DOI: 10.1016/j.ijbiomac.2016.09.114
    In the present work, copper nanoparticles (CuNPs) were in situ generated inside cellulose matrix using Terminalia catappa leaf extract as a reducing agent. During this process, some CuNPs were also formed outside the matrix. The CuNPs formed outside the matrix were observed with transmission electron microscope (TEM) and scanning electron microscope (SEM). Majority of the CuNPs formed outside the matrix were in the size range of 21-30nm. The cellulose/CuNP composite films were characterized by Fourier transform infrared spectroscopic, X-Ray diffraction and thermogravimetric techniques. The crystallinity of the cellulose/CuNP composite films was found to be lower than that of the matrix indicating rearrangement of cellulose molecules by in situ generated CuNPs. Further, the expanded diffractogram of the composite films indicated the presence of a mixture of Cu, CuO and Cu2O nanoparticles. The thermal stability of the composites was found to be lower than that of the composites upto 350°C beyond which a reverse trend was observed. This was attributed to the catalytic behaviour of CuNPs for early degradation of the composites. The composite films possessed sufficient tensile strength which can replace polymer packaging films like polyethylene. Further, the cellulose/CuNP composite films exhibited good antibacterial activity against E.coli bacteria.
    Matched MeSH terms: Food Packaging
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links