Displaying publications 61 - 80 of 1846 in total

Abstract:
Sort:
  1. Qader SW, Abdulla MA, Chua LS, Najim N, Zain MM, Hamdan S
    Molecules, 2011 Apr 21;16(4):3433-43.
    PMID: 21512451 DOI: 10.3390/molecules16043433
    Aqueous and ethanol extracts of different traditional Malaysian plants (Polygonum minus, Andrographis paniculata, Curcuma xanthorrhiza, Momordica charantia and Strobilanthes crispus) were evaluated for their antioxidant properties, total phenolic content and cytotoxic activity. Antioxidant activity was evaluated by using 1,1-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. The results showed that ethanol extracts contain high antioxidant activities compared to aqueous extracts. The findings exhibited a strong correlation between antioxidant activity and the total phenol contents. In addition, all the plant extracts showed non-toxic effects against a normal human lung fibroblast cell line (Hs888Lu). Although traditionally aqueous extracts are used, we determined that ethanol extracts usually achieved better activity in the assays.
    Matched MeSH terms: Antioxidants/analysis; Antioxidants/pharmacology*
  2. Mohamed M, Sirajudeen K, Swamy M, Yaacob NS, Sulaiman SA
    Afr J Tradit Complement Altern Med, 2009 Oct 15;7(1):59-63.
    PMID: 21304614
    Honey has been used since ancient times for its nutritional as well as curative properties. Tualang honey is collected from wild honey bees' hives on Tualang trees found in the Malaysian rain forest. It has been used traditionally for the treatment of various diseases, where its therapeutic value has partly been related to its antioxidant properties. This study therefore assessed the colour intensity, total phenolic content, antioxidant activity and antiradical activity of gamma irradiated Tualang Honey. The colour intensity at ABS₄₅₀ was 489.5 ± 1.7 mAU, total phenolic content was 251.7 ± 7.9 mg (gallic acid) /Kg honey, total antioxidant activity by FRAP assay was 322.1 ± 9.7 (µM Fe(II)) and the antiradical activity by DPPH assay was 41.30 ± 0.78 (% inhibition). The data confirms that the antioxidant properties of gamma irradiated Tualang honey are similar to other types of honeys reported in the literature.
    Matched MeSH terms: Antioxidants/pharmacology*; Antioxidants/chemistry
  3. Sugiyama S
    Yakushigaku Zasshi, 2005;40(2):98-106.
    PMID: 17152831
    This article attempts to trace the origin of tea. The author believes the ancient Chinese tea, "chia", is either Jicha (water extract from the pith of Acacia catechu that grows naturally in the mountainous border between the Yunnan province of China and southern Asian countries) or Jicha-Kagikazura (water extract from the young branches and leaves of Uncaris gambir, originally found in India/Sri Lanka). Both were pulverized after being kiln-dried and then mixed with water to produce a thick suspension, or tea. Although the drink is bitter and has an astringent property, it has a particular flavor with a refreshing after-taste. Its components with medicinal properties include tannin, catechin, and various flavonoids, making us believe it was worthwhile for the people at the time to consume the drink regularly. Generally speaking, tea cultivation in China flourished south of the Yangzi Jiang River including the present Zhejiang and Anhui provinces. Depending on the regions, there were words for tea in various languages, including the names of places where particular teas were grown. In addition to the names that appear in the famous Chajing book, it is interesting to note Da Fang pronounced tea as "TAH". Because the area south of the Yangzi Jiang has traditionally been active in foreign trade since the ancient and middle ages. People in this region consumed various foreign originated teas as well. This included Gambir, which was introduced to southern Asia (including present Malaysia and Indonesia) and was consumed as an herbal tea under names such as Guo Luo or Ju Luo teas. Paan, from India, also uses Gambir paste and was a popular chewing refreshment to prevent diseases caused by miasma as well as to keep one's mouth clean. The name A-sen-yaku used in Japan was taken from the plant name Acasia, and Gambir was used to dye Buddhist monks' Ke-Ra bags to a blackish yellow color. The Daikanwa dictionary states the Ra in the name, which means thin silk, was later replaced with "A". The official name for Ji-cha [Er Cha] in modern China is "Gaiji-cha", [Hal-Er Cha], which comes from the name of a variety of tea made by the Ai-Ni tribal subgroup of the ethnic Ha-Ni in Yunnan province. The [see character in text] character is pronounced "ni", which is a homophony of [character in text]. Based on these facts, "Ai-Ni" should be considered the same as "Hai-Ni". Because the ethnic groups in Yunnan province used primitive and tough tea leaves, which were eaten instead of being infused in water, the leaves were first fermented by being buried in the ground. Even today, people of these ethnic groups prefer fungus-fermented black tea with a particular flavor. In contrast, the ethnic Hans used and still use improved and softer young shoots of tea leaves to prepare mainly green tea. It has recently been discovered that Acapsia, as well as Gambir, has anti-oxidant properties, and that consumption over time is effective against many lifestyle-related adult diseases. It may be well worthwhile to cast fresh light upon ancient tea drinking customs.
    Matched MeSH terms: Antioxidants/history*; Antioxidants/therapeutic use
  4. Kim YM, Abas F, Park YS, Park YK, Ham KS, Kang SG, et al.
    Molecules, 2021 Jul 21;26(15).
    PMID: 34361562 DOI: 10.3390/molecules26154405
    Fruit used in the common human diet in general, and kiwifruit and persimmon particularly, displays health properties in the prevention of heart disease. This study describes a combination of bioactivity, multivariate data analyses and fluorescence measurements for the differentiating of kiwifruit and persimmon, their quenching and antioxidant properties. The metabolic differences are shown, as well in the results of bioactivities and antioxidant capacities determined by ABTS, FRAP, CUPRAC and DPPH assays. To complement the bioactivity of these fruits, the quenching properties between extracted polyphenols and human serum proteins were determined by 3D-fluorescence spectroscopy studies. These properties of the extracted polyphenols in interaction with the main serum proteins in the human metabolism (human serum albumin (HSA), α-β-globulin (α-β G) and fibrinogen (Fgn)), showed that kiwifruit was more reactive than persimmon. There was a direct correlation between the quenching properties of the polyphenols of the investigated fruits with serum human proteins, their relative quantification and bioactivity. The results of metabolites and fluorescence quenching show that these fruits possess multiple properties that have a great potential to be used in industry with emphasis on the formulation of functional foods and in the pharmaceutical industry. Based on the quenching properties of human serum proteins with polyphenols and recent reports in vivo on human studies, we hypothesize that HSA, α-β G and Fgn will be predictors of coronary artery disease (CAD).
    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/chemistry*
  5. Teoh HL, Aminudin N, Abdullah N
    Int J Med Mushrooms, 2021;23(2):43-56.
    PMID: 33639080 DOI: 10.1615/IntJMedMushrooms.2021037649
    Nonalcoholic fatty liver disease (NAFLD) is currently one of the most common liver diseases worldwide. Lifestyle modifications through the diet are the mainstay of treatment. Auricularia nigricans is a popular edible mushroom known to possess medicinal properties. Gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry analysis indicated that linoleic acid ethyl ester, butyl 9,12-octadecadienoate, 9,12-octadecadienoic acid, ergosta-5,7,22-trien-3-ol, 2(3,4-dihydroxyphenyl)-7-hydroxy-5-benzene propanoic acid, and 3,30-di-0-methyl ellagic acid were present in the A. nigricans ethyl acetate (EA) fraction. The cytotoxicity assay showed that the EA fraction was noncytotoxic to HepG2 cells at concentrations < 100 μg/mL. In the antihepatic steatosis assay, 50 μg/mL of EA fraction caused a decline in absorbance to 0.20 ± 0.02 compared to palmitic acid (PA)-induced cells (0.24 ± 0.02). Furthermore, cells treated with 50 μg/mL and 25 μg/mL of EA fraction contributed an approximately 1.12-fold and 1.08-fold decrease in lipid accumulation compared to PA-induced cells. Coincubation with PA and 25 μg/mL of EA fraction decreased levels of tumor necrosis factor-α, interleukin (IL)-6, IL-8, and monocyte chemoattractant protein-1 to 140.48 ± 8.12, 91.16 ± 2.40, 184.00 ± 22.68, and 935.88 ± 39.36 pg/mL compared to PA-induced cells. The presence of the EA fraction also suppressed the stress-activated protein kinase/Jun amino-terminal kinase, p-38 mitogen-activated protein kinase, nuclear factor-κB, and signal transducer and activator of transcription 3 signaling pathways. In conclusion, these findings suggest that the A. nigricans EA fraction demonstrates antisteatotic effects involving antioxidant capacity, hypolipidemic effects, and anti-inflammatory capacity in the PA-induced NAFLD pathological cell model.
    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/therapeutic use
  6. Shaikh SA, Varatharajan R, Muthuraman A
    Int J Mol Sci, 2022 Nov 04;23(21).
    PMID: 36362316 DOI: 10.3390/ijms232113531
    Vascular dementia (VaD) is a serious global health issue and type 2 diabetes mellitus (T2DM) patients are at higher risk. Palm oil tocotrienol-rich fraction (TRF) exhibits neuroprotective properties; however, its effect on VaD is not reported. Hence, we evaluated TRF effectiveness in T2DM-induced VaD rats. Rats were given a single dose of streptozotocin (STZ) and nicotinamide (NA) to develop T2DM. Seven days later, diabetic rats were given TRF doses of 30, 60, and 120 mg/kg orally for 21 days. The Morris water maze (MWM) test was performed for memory assessment. Biochemical parameters such as blood glucose, plasma homocysteine (HCY) level, acetylcholinesterase (AChE) activity, reduced glutathione (GSH), superoxide dismutase (SOD) level, and histopathological changes in brain hippocampus and immunohistochemistry for platelet-derived growth factor-C (PDGF-C) expression were evaluated. VaD rats had significantly reduced memory, higher plasma HCY, increased AChE activity, and decreased GSH and SOD levels. However, treatment with TRF significantly attenuated the biochemical parameters and prevented memory loss. Moreover, histopathological changes were attenuated and there was increased PDGF-C expression in the hippocampus of VaD rats treated with TRF, indicating neuroprotective action. In conclusion, this research paves the way for future studies and benefits in understanding the potential effects of TRF in VaD rats.
    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/therapeutic use
  7. Hasan M, Mokhtar AS, Mahmud K, Berahim Z, Rosli AM, Hamdan H, et al.
    Sci Rep, 2022 Nov 15;12(1):19602.
    PMID: 36379972 DOI: 10.1038/s41598-022-24144-2
    WeedLock is a broad-spectrum plant-based bioherbicide that is currently on the market as a ready-to-use formulation. In this study, we investigated the physiological and biochemical effects of WeedLock (672.75 L ha-1) on Ageratum conyzoides L., Eleusine indica (L.) Gaertn, Zea mays L., and Amaranthus gangeticus L. at four different time points. WeedLock caused significant reductions in chlorophyll pigment content and disrupted photosynthetic processes in all test plants. The greatest inhibition in photosynthesis was recorded in A. conyzoides at 24 h post-treatment with a 74.88% inhibition. Plants treated with WeedLock showed increased malondialdehyde (MDA) and proline production, which is indicative of phytotoxic stress. Remarkably, MDA contents of all treated plants increased by more than 100% in comparison to untreated. The activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) was elevated following treatment with WeedLock. Significant increases were observed in the SOD activity of A. conyzoides ranging from 69.66 to 118.24% from 6 to 72 h post-treatment. Our findings confirm that WeedLock disrupts the normal physiological and biochemical processes in plants following exposure and that its mode of action is associated with ROS (reactive oxygen species) production, similar to that of PPO (protoporphyrinogen oxidase) inhibitors, although specific site-of-action of this novel bioherbicide warrants further investigation.
    Matched MeSH terms: Antioxidants/metabolism; Antioxidants/pharmacology
  8. Ahmad MA, Lim YH, Chan YS, Hsu CY, Wu TY, Sit NW
    Acta Pharm, 2022 Jun 01;72(2):317-328.
    PMID: 36651512 DOI: 10.2478/acph-2022-0013
    This study was conducted to evaluate the chemical composition and biological activities of the leaf extracts of Syzygium myrtifolium Walp. (Myrtaceae). The results indicate that the leaf extracts of S. myrtifolium contain various classes of phytochemicals (alkaloids, anthraquinones, flavonoids, phenolics, saponins, tannins and triterpenoids) and possess antioxidant, antibacterial, antifungal and antiviral activities. Ethyl acetate, ethanol, methanol, and water extracts exhibited significantly higher (p < 0.05) oxygen radical absorbance capacity and ferric-reducing antioxidant power than the hexane and chloroform extracts. However, all extracts exhibited stronger inhibitory activity against four tested species of yeasts (minimal inhibitory concentration: 0.02-0.31 mg mL-1) than against six tested species of bacteria (minimal inhibitory concentration: 0.16-1.25 mg mL-1). The ethanolic extract offered the highest protection of Vero cells (viability > 70 %) from the cytopathic effect caused by the Chikungunya virus while the ethyl acetate extract showed significant replication inhibitory activity against the virus (p < 0.001) using the replicon-enhanced green fluorescent protein reporter system.
    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/chemistry
  9. Alharbi KS, Javed Shaikh MA, Imam SS, Alshehri S, Ghoneim MM, Almalki WH, et al.
    Curr Med Chem, 2023;30(18):2061-2074.
    PMID: 36415096 DOI: 10.2174/0929867330666221122115212
    More than 10 million people worldwide have Alzheimer's disease (AD), a degenerative neurological illness and the most prevalent form of dementia. AD's progression in memory loss, cognitive deterioration, and behavioral changes are all symptoms. Amyloid-beta 42 (Aβ42), the hyperphosphorylated forms of microtubule-associated tau protein, and other cellular and systemic alterations are all factors that contribute to cognitive decline in AD. Rather than delivering a possible cure, present therapy strategies focus on reducing disease symptoms. It has long been suggested that various naturally occurring small molecules (plant extract products and microbiological isolates, for example) could be beneficial in preventing or treating disease. Small compounds, such as flavonoids, have attracted much interest recently due to their potential to alleviate cellular stress. Flavonoids have been proven helpful in various ways, including antioxidants, anti-inflammatory agents, and anti-apoptotic agents, but their mechanism remains unknown. The flavonoid therapy of Alzheimer's disease focuses on this review, which includes a comprehensive literature analysis.
    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/therapeutic use
  10. Jobaer MA, Ashrafi S, Ahsan M, Hasan CM, Rashid MA, Islam SN, et al.
    Molecules, 2023 May 19;28(10).
    PMID: 37241926 DOI: 10.3390/molecules28104186
    Gynura procumbens (Lour.) Merr. (Family: Asteraceae) is a tropical Asian medicinal plant found in Thailand, China, Malaysia, Indonesia, and Vietnam. It has long been utilized to treat a variety of health concerns in numerous countries around the world, such as renal discomfort, constipation, diabetes mellitus, rheumatism, and hypertension. The chemical investigation resulted in the isolation and characterization of six compounds from the methanol (MeOH) extract of the leaves of Gynura procumbens, which were identified as phytol (1), lupeol (2), stigmasterol (3), friedelanol acetate (4), β-amyrin (5), and a mixture of stigmasterol and β-sitosterol (6). In-depth investigations of the high-resolution 1H NMR and 13C NMR spectroscopic data from the isolated compounds, along with comparisons to previously published data, were used to clarify their structures. Among these, the occurrence of Compounds 1 and 4 in this plant are reported for the first time. The crude methanolic extract (CME) and its different partitionates, i.e., petroleum ether (PESF), chloroform (CSF), ethyl acetate (EASF), and aqueous (AQSF) soluble fractions, were subjected to antioxidant, cytotoxic, thrombolytic, and anti-diabetic activities. In a DPPH free radical scavenging assay, EASF showed the maximum activity, with an IC50 value of 10.78 µg/mL. On the other hand, CSF displayed the highest cytotoxic effect with an LC50 value of 1.94 µg/mL compared to 0.464 µg/mL for vincristine sulphate. In a thrombolytic assay, the crude methanolic extract exhibited the highest activity (63.77%) compared to standard streptokinase (70.78%). During the assay for anti-diabetic activity, the PESF showed 70.37% of glucose-lowering activity, where standard glibenclamide showed 63.24% of glucose-reducing activity.
    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/chemistry
  11. El Hachlafi N, Benkhaira N, Al-Mijalli SH, Mrabti HN, Abdnim R, Abdallah EM, et al.
    Biomed Pharmacother, 2023 Aug;164:114937.
    PMID: 37267633 DOI: 10.1016/j.biopha.2023.114937
    Mentha suaveolens, Lavandula stoechas, and Ammi visnaga are widely used in Moroccan folk medicine against several pathological disorders, including diabetes and infectious diseases. This work was designed to determine the chemical profile of M. suaveolens (MSEO), L. stoechas (LSEO), and A. visnaga (AVEO) essential oils and assess their antimicrobial, antioxidant, and antidiabetic effects. The volatile components of LSEO, AVEO, and MSEO were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The in vitro antidiabetic activity was assessed using α-amylase and α-glucosidase enzymes, while DPPH, FRAP, and β-carotene/linoleic acid methods were used to determine the antioxidant capacity. The antimicrobial activities were investigated using disc diffusion and broth-microdilution assays. GC-MS investigation revealed that the main components were fenchone (29.77 %) and camphor (24.9 %) for LSEO, and linalool (38.29 %) for AVEO, while MSEO was mainly represented by piperitenone oxide (74.55 %). The results of the antimicrobial evaluation showed that all examined essential oils (EOs) had noticeable antimicrobial activity against both bacteria and yeast, especially Micrococcus luteus and Bacillus subtilis. The MIC, MBC, and MFC values were ranged from 0.015 % to 0.5 %. The MBC/MIC and MFC/MIC ratios were less than or equal to 4.0 % (v/v), indicating their noticeable bactericidal and candidacidal efficacy. Moreover, the three EOs showed significant inhibitory effects on α-amylase and α-glucosidase (p 
    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/chemistry
  12. Al-Awaida W, Goh KW, Al-Ameer HJ, Gushchina YS, Torshin VI, Severin AE, et al.
    Molecules, 2023 Nov 09;28(22).
    PMID: 38005223 DOI: 10.3390/molecules28227502
    Exposure to water-pipe smoking, whether flavored or unflavored, has been shown to instigate inflammation and oxidative stress in BALB/c mice. This consequently results in alterations in the expression of inflammatory markers and antioxidant genes. This study aimed to scrutinize the impact of Epigallocatechin gallate (EGCG)-a key active component of green tea-on inflammation and oxidative stress in BALB/c mice exposed to water-pipe smoke. The experimental setup included a control group, a flavored water-pipe smoke (FWP) group, an unflavored water-pipe smoke (UFWP) group, and EGCG-treated flavored and unflavored groups (FWP + EGCG and UFWP + EGCG). Expression levels of IL-6, IL1B, TNF-α, CAT, GPXI, MT-I, MT-II, SOD-I, SOD-II, and SOD-III were evaluated in lung, liver, and kidney tissues. Histopathological changes were also assessed. The findings revealed that the EGCG-treated groups manifested a significant decline in the expression of inflammatory markers and antioxidant genes compared to the FWP and UFWP groups. This insinuates that EGCG holds the capacity to alleviate the damaging effects of water-pipe smoke-induced inflammation and oxidative stress. Moreover, enhancements in histopathological features were observed in the EGCG-treated groups, signifying a protective effect against tissue damage induced by water-pipe smoking. These results underscore the potential of EGCG as a protective agent against the adverse effects of water-pipe smoking. By curbing inflammation and oxidative stress, EGCG may aid in the prevention or mitigation of smoking-associated diseases.
    Matched MeSH terms: Antioxidants/metabolism; Antioxidants/pharmacology
  13. Khan KM, Nadeem MF, Mannan A, Chohan TA, Islam M, Ansari SA, et al.
    Chem Biodivers, 2024 Jan;21(1):e202301375.
    PMID: 38031244 DOI: 10.1002/cbdv.202301375
    Trillium govanianum is a high-value medicinal herb, having multifunctional traditional and culinary uses. The present investigation was carried out to evaluate the phytochemical, biological and toxicological parameters of the T. govanianum Wall. ex D. Don (Family: Trilliaceae) roots collected from Azad Kashmir, Pakistan. Phytochemical profiling was achieved by determining total bioactive contents (total phenolic and flavonoid contents) and UHPLC-MS analysis. For biological evaluation, antioxidant activities (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum, and metal chelation assays) and enzyme inhibition activities (against AChE, BChE, glucosidase, amylase, and tyrosinase) were performed. Moreover, cytotoxicity was assessed against three human carcinoma cell lines (MDA-MB-231, CaSki, and DU-145). The tested extract was found to contain higher total phenolics (7.56 mg GAE/g dry extract) as compared to flavonoid contents (0.45 mg RE/g dry extract). Likewise, for the antioxidant activity, higher CUPRAC activity was noted with 39.84 mg TE/g dry extract values. In the case of enzyme assays, higher activity was pointed out against the cholinesterase, glucosidase and tyrosinase enzymes. The plant extract displayed significant cytotoxicity against the cell lines examined. Moreover, the in-silico studies highlighted the interaction between the important phytochemicals and tested enzymes. To conclude, the assessed biological activity and the existence of bioactive phytochemicals in the studied plant extract may pave the way for the development of novel pharmaceuticals.
    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/chemistry
  14. Ali JS, Saleem H, Mannan A, Zengin G, Mahomoodally MF, Locatelli M, et al.
    BMC Complement Med Ther, 2020 Oct 16;20(1):313.
    PMID: 33066787 DOI: 10.1186/s12906-020-03093-1
    BACKGROUND: Ethnobotanical and plant-based products allow for the isolation of active constituents against a number of maladies. Monotheca buxifolia is used by local communities due to its digestive and laxative properties, as well as its ability to cure liver, kidney, and urinary diseases. There is a need to explore the biological activities and chemical constituents of this medicinal plant.

    METHODS: In this work, the biochemical potential of M. buxifolia (Falc.) A. DC was explored and linked with its biological activities. Methanol and chloroform extracts from leaves and stems were investigated for total phenolic and flavonoid contents. Ultrahigh-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) was used to determine secondary-metabolite composition, while high-performance liquid chromatography coupled with photodiode array detection (HPLC-PDA) was used for polyphenolic quantification. In addition, we carried out in vitro assays to determine antioxidant potential and the enzyme-inhibitory response of M. buxifolia extracts.

    RESULTS: Phenolics (91 mg gallic-acid equivalent (GAE)/g) and flavonoids (48.86 mg quercetin equivalent (QE)/g) exhibited their highest concentration in the methanol extract of stems and the chloroform extract of leaves, respectively. UHPLC-MS analysis identified a number of important phytochemicals, belonging to the flavonoid, phenolic, alkaloid, and terpenoid classes of secondary metabolites. The methanol extract of leaves contained a diosgenin derivative and polygalacin D, while kaempferol and robinin were most abundant in the chloroform extract. The methanol extract of stems contained a greater peak area for diosgenin and kaempferol, whereas this was true for lucidumol A and 3-O-cis-coumaroyl maslinic acid in the chloroform extract. Rutin, epicatechin, and catechin were the main phenolics identified by HPLC-PDA analysis. The methanol extract of stems exhibited significant 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activities (145.18 and 279.04 mmol Trolox equivalent (TE)/g, respectively). The maximum cupric reducing antioxidant capacity (CUPRAC) (361.4 mg TE/g), ferric-reducing antioxidant power (FRAP) (247.19 mg TE/g), and total antioxidant potential (2.75 mmol TE/g) were depicted by the methanol extract of stems. The methanol extract of leaves exhibited stronger inhibition against acetylcholinesterase (AChE) and glucosidase, while the chloroform extract of stems was most active against butyrylcholinesterase (BChE) (4.27 mg galantamine equivalent (GALAE)/g). Similarly, the highest tyrosinase (140 mg kojic-acid equivalent (KAE)/g) and amylase (0.67 mmol acarbose equivalent (ACAE)/g) inhibition was observed for the methanol extract of stems.

    CONCLUSIONS: UHPLC-MS analysis and HPLC-PDA quantification identified a number of bioactive secondary metabolites of M. buxifolia, which may be responsible for its antioxidant potential and enzyme-inhibitory response. M. buxifolia can be further explored for the isolation of its active components to be used as a drug.

    Matched MeSH terms: Antioxidants/pharmacology*; Antioxidants/chemistry*
  15. Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, et al.
    Exp Gerontol, 2024 Apr;188:112389.
    PMID: 38432575 DOI: 10.1016/j.exger.2024.112389
    Aging-related diseases (ARDs) are a major global health concern, and the development of effective therapies is urgently needed. Kaempferol, a flavonoid found in several plants, has emerged as a promising candidate for ameliorating ARDs. This comprehensive review examines Kaempferol's chemical properties, safety profile, and pharmacokinetics, and highlights its potential therapeutic utility against ARDs. Kaempferol's therapeutic potential is underpinned by its distinctive chemical structure, which confers antioxidative and anti-inflammatory properties. Kaempferol counteracts reactive oxygen species (ROS) and modulates crucial cellular pathways, thereby combating oxidative stress and inflammation, hallmarks of ARDs. Kaempferol's low toxicity and wide safety margins, as demonstrated by preclinical and clinical studies, further substantiate its therapeutic potential. Compelling evidence supports Kaempferol's substantial potential in addressing ARDs through several mechanisms, notably anti-inflammatory, antioxidant, and anti-apoptotic actions. Kaempferol exhibits a versatile neuroprotective effect by modulating various proinflammatory signaling pathways, including NF-kB, p38MAPK, AKT, and the β-catenin cascade. Additionally, it hinders the formation and aggregation of beta-amyloid protein and regulates brain-derived neurotrophic factors. In terms of its anticancer potential, kaempferol acts through diverse pathways, inducing apoptosis, arresting the cell cycle at the G2/M phase, suppressing epithelial-mesenchymal transition (EMT)-related markers, and affecting the phosphoinositide 3-kinase/protein kinase B signaling pathways. Subsequent studies should focus on refining dosage regimens, exploring innovative delivery systems, and conducting comprehensive clinical trials to translate these findings into effective therapeutic applications.
    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/therapeutic use
  16. Sheibani S, Jafarzadeh S, Qazanfarzadeh Z, Osadee Wijekoon MMJ, Mohd Rozalli NH, Mohammadi Nafchi A
    Int J Biol Macromol, 2024 May;267(Pt 1):131537.
    PMID: 38608975 DOI: 10.1016/j.ijbiomac.2024.131537
    The growing demand for sustainable and eco-friendly food packaging has prompted research on innovative solutions to environmental and consumer health issues. To enhance the properties of smart packaging, the incorporation of bioactive compounds derived from various natural sources has attracted considerable interest because of their functional properties, including antioxidant and antimicrobial effects. However, extracting these compounds from natural sources poses challenges because of their complex chemical structures and low concentrations. Traditional extraction methods are often environmentally harmful, expensive and time-consuming. Thus, green extraction techniques have emerged as promising alternatives, offering sustainable and eco-friendly approaches that minimise the use of hazardous solvents and reduce environmental impact. This review explores cutting-edge research on the green extraction of bioactive compounds and their incorporation into smart packaging systems in the last 10 years. Then, an overview of bioactive compounds, green extraction techniques, integrated techniques, green extraction solvents and their application in smart packaging was provided, and the impact of bioactive compounds incorporated in smart packaging on the shelf lives of food products was explored. Furthermore, it highlights the challenges and opportunities within this field and presents recommendations for future research, aiming to contribute to the advancement of sustainable and efficient smart packaging solutions.
    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/chemistry
  17. Anwar F, Mahrye, Khan R, Qadir R, Saadi S, Gruczynska-Sekowska E, et al.
    Chem Biodivers, 2024 Jul;21(7):e202400500.
    PMID: 38719739 DOI: 10.1002/cbdv.202400500
    The Thymus genus includes various medicinal and aromatic species, cultivated worldwide for their unique medicinal and economic value. Besides, their conventional use as a culinary flavoring agent, Thymus species are well-known for their diverse biological effects, such as antioxidant, anti-fungal, anti-bacterial, anti-viral, anti-tumor, anti-inflammatory, anti-cancer, and anti-hypertensive properties. Hence, they are used in the treatment of fever, colds, and digestive and cardiovascular diseases. The pharmaceutical significance of Thymus plants is due to their high levels of bioactive components such as natural terpenoid phenol derivatives (p-cymene, carvacrol, thymol, geraniol), flavonoids, alkaloids, and phenolic acids. This review examines the phytochemicals, biological properties, functional food, and nutraceutical attributes of some important Thymus species, with a specific focus on their potential uses in the nutra-pharmaceutical industries. Furthermore, the review provides an insight into the mechanisms of biological activities of key phytochemicals of Thymus species exploring their potential for the development of novel natural drugs.
    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/chemistry
  18. Lim HJ, Tang SY, Chan KW, Manickam S, Yu LJ, Tan KW
    Int J Biol Macromol, 2024 Aug;274(Pt 1):133329.
    PMID: 38908640 DOI: 10.1016/j.ijbiomac.2024.133329
    Neoterically, food packaging systems designed solely for prolonging shelf life or monitoring freshness could not fulfil the dynamic demands of consumers. In this current investigation, using the solvent casting method, a versatile halochromic indicator was created by integrating black currant anthocyanin and cinnamon essential oil-loaded Pickering emulsion into a starch/gelatin matrix. The resulting indicator film underwent scrutiny for its structural, pH-sensitive, antioxidant, and antimicrobial attributes. Unexpectedly, the amalgamation of anthocyanin and essential oil led to decreased antioxidant activity, dropping from 73.23 ± 2.17 to 28.87 ± 2.50 mg Trolox equivalent/g sample. Additionally, no discernible antimicrobial properties were detected in the composite film sample against both Staphylococcus aureus and Escherichia coli. Fourier transform infrared analyses unveiled robust intermolecular interactions among the film-forming components, providing insights into the observed antagonistic effect. The indicator film displayed distinctive colour changes corresponding to the fresh (greyish-brown), onset of decomposition (khaki), and spoiled (dark green) stages of the stored fish sample. This highlights its promising potential for providing real-time indications of food spoilage. These findings are important for the efficient design of composite films incorporating anthocyanins and essential oils. They serve as a guide towards their potential use as multifunctional packaging materials in the food industry.
    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/chemistry
  19. Erejuwa OO, Sulaiman SA, Ab Wahab MS
    Molecules, 2012 Apr 12;17(4):4400-23.
    PMID: 22499188 DOI: 10.3390/molecules17044400
    The global prevalence of chronic diseases such as diabetes mellitus, hypertension, atherosclerosis, cancer and Alzheimer's disease is on the rise. These diseases, which constitute the major causes of death globally, are associated with oxidative stress. Oxidative stress is defined as an "imbalance between oxidants and antioxidants in favor of the oxidants, potentially leading to damage". Individuals with chronic diseases are more susceptible to oxidative stress and damage because they have elevated levels of oxidants and/or reduced antioxidants. This, therefore, necessitates supplementation with antioxidants so as to delay, prevent or remove oxidative damage. Honey is a natural substance with many medicinal effects such as antibacterial, hepatoprotective, hypoglycemic, reproductive, antihypertensive and antioxidant effects. This review presents findings that indicate honey may ameliorate oxidative stress in the gastrointestinal tract (GIT), liver, pancreas, kidney, reproductive organs and plasma/serum. Besides, the review highlights data that demonstrate the synergistic antioxidant effect of honey and antidiabetic drugs in the pancreas, kidney and serum of diabetic rats. These data suggest that honey, administered alone or in combination with conventional therapy, might be a novel antioxidant in the management of chronic diseases commonly associated with oxidative stress. In view of the fact that the majority of these data emanate from animal studies, there is an urgent need to investigate this antioxidant effect of honey in human subjects with chronic or degenerative diseases.
    Matched MeSH terms: Antioxidants/pharmacology*; Antioxidants/chemistry
  20. Al-Mijalli SH, Mrabti NN, Ouassou H, Sheikh RA, Assaggaf H, Bakrim S, et al.
    Molecules, 2022 Oct 28;27(21).
    PMID: 36364152 DOI: 10.3390/molecules27217329
    The purposes of this investigatory study were to determine the chemical composition of the essential oils (EOs) of Origanum compactum from two Moroccan regions (Boulemane and Taounate), as well as the evaluation of their biological effects. Determining EOs' chemical composition was performed by a gas chromatography-mass spectrophotometer (GC-MS). The antioxidant activity of EOs was evaluated using free radical scavenging ability (DPPH method), fluorescence recovery after photobleaching (FRAP), and lipid peroxidation inhibition assays. The anti-inflammatory effect was assessed in vitro using the 5-lipoxygenase (5-LOX) inhibition test and in vivo using the carrageenan-induced paw edema model. Finally, the antibacterial effect was evaluated against several strains using the disk-diffusion assay and the micro-dilution method. The chemical constituent of O. compactum EO (OCEO) from the Boulemane zone is dominated by carvacrol (45.80%), thymol (18.86%), and α-pinene (13.43%). However, OCEO from the Taounate zone is rich in 3-carene (19.56%), thymol (12.98%), and o-cymene (11.16%). OCEO from Taounate showed higher antioxidant activity than EO from Boulemane. Nevertheless, EO from Boulemane considerably inhibited 5-LOX (IC50 = 0.68 ± 0.02 µg/mL) compared to EO from Taounate (IC50 = 1.33 ± 0.01 µg/mL). A similar result was obtained for tyrosinase inhibition with Boulemane EO and Taounate EO, which gave IC50s of 27.51 ± 0.03 μg/mL and 41.83 ± 0.01 μg/mL, respectively. The in vivo anti-inflammatory test showed promising effects; both EOs inhibit and reduce inflammation in mice. For antibacterial activity, both EOs were found to be significantly active against all strains tested in the disk-diffusion test, but O. compactum EO from the Boulemane region showed the highest activity. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for O. compactum EO from the Boulemane region ranged from 0.06 to 0.25% (v/v) and from 0.15 to 0.21% (v/v) for O. compactum from the Taounate region. The MBC/MIC index revealed that both EOs exhibited remarkable bactericidal effects.
    Matched MeSH terms: Antioxidants/pharmacology; Antioxidants/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links