Displaying publications 61 - 80 of 134 in total

Abstract:
Sort:
  1. Lim, S.M., Loh, S.P.
    MyJurnal
    This study aims to determine the antioxidant capacities (AC) and antidiabetic properties of
    phenolic extracts (free and bound) from white Tambun pomelo peels, kaffir lime peels, lime
    peels and calamansi peels. AC, total phenolic content (TPC) and antidiabetic properties of
    selected citrus peels extracts were determined spectrophotometrically using 2,2-Diphenyl-1-
    picrylhydrazyl free radical (DPPH) scavenging, ferric-reducing antioxidant power (FRAP),
    Folin-Ciocalteu (FC) and α-amylase and α-glucosidase inhibition assay, respectively. This
    study found that the methanolic extract of kaffir lime showed the best AC with the lowest
    IC50 value of DPPH radical (7.51 ± 0.50 mg/ml) and highest FRAP value [369.48 ± 20.15
    mM Fe (II) E/g DW]. TPC of free phenolic extracts of all citrus peels were significantly (p<
    0.05) higher compared to the bound phenolic extracts with extract of calamansi showed the
    highest TPC. Free- and bound phenolic extract of calamansi also had the highest α-amylase
    inhibition activity (61.79 ± 4.13%; 45.30 ± 5.35%) respectively. The highest inhibitory effect in
    α-glucosidase inhibition assay of free- and bound phenolic extracts were white Tambun pomelo
    (41.06 ± 10.94%) and calamansi (43.99 ± 22.03%) respectively. Hence, the citrus peels could
    be furthered study for their potential in management and/or prevention of diabetes.
    Matched MeSH terms: alpha-Glucosidases
  2. Gollapalli M, Taha M, Ullah H, Nawaz M, AlMuqarrabun LMR, Rahim F, et al.
    Bioorg Chem, 2018 10;80:112-120.
    PMID: 29894890 DOI: 10.1016/j.bioorg.2018.06.001
    In search of better α-glucosidase inhibitors, a series of bis-indolylmethane sulfonohydrazides derivatives (1-14) were synthesized and evaluated for their α-glucosidase inhibitory potential. All derivatives exhibited outstanding α-glucosidase inhibition with IC50 values ranging between 0.10 ± 0.05 to 5.1 ± 0.05 μM when compared with standard drug acarbose having IC50 value 856.28 ± 3.15 μM. Among the series, analog 7 (0.10 ± 0.05 μM) with tri-chloro substitution on phenyl ring was identified as the most potent inhibitor of α-glucosidase (∼ 8500 times). The structure activity relationship has been also established. Molecular docking studies were also performed to help understand the binding interaction of the most active analogs with receptors. From the docking studies, it was observed that all the active bis-indolylmethane sulfonohydrazides derivatives showed considerable binding interactions within the active site (acarbose inhibition site) of α-glucosidase. We also evaluated toxicity of all derivatives and found none of them are toxic.
    Matched MeSH terms: alpha-Glucosidases
  3. Rahim F, Zaman K, Taha M, Ullah H, Ghufran M, Wadood A, et al.
    Bioorg Chem, 2020 01;94:103394.
    PMID: 31699396 DOI: 10.1016/j.bioorg.2019.103394
    Voglibose and acarbose are distinguished α-glucosidase inhibitors used for controlling of diabetes mellitus. Unfortunately, these distinguished and clinically used inhibitors have also numerous side effects. Subsequently, there is still needed to develop safer therapy. Despite of a broad spectrum of biological importance of benzimidazole, it is occasionally evaluated for α-glucosidase activity. Current study deals with the synthesis and biological screening of benzimidazole bearing bis-Schiff bases (1-19) for their α-glucosidase inhibitory activity. All analogues exhibited excellent to good inhibitory potential (IC50 = 2.20 ± 0.1to 88.60 ± 1.70 µM) when compared with standard drug acarbose (IC50 = 38.45 ± 0.80 µM). A structure activity relationship has been established on the basis of electronic effects and position of different substituents present on phenyl ring. In order to rationalize the binding interactions of most active analogues with the active site of α-glucosidase enzyme, molecular docking study was conducted.
    Matched MeSH terms: alpha-Glucosidases
  4. Kawde AN, Taha M, Alansari RS, Almandil NB, Anouar EH, Uddin N, et al.
    Int J Biol Macromol, 2020 Jul 01;154:217-232.
    PMID: 32173438 DOI: 10.1016/j.ijbiomac.2020.03.090
    α-Glucosidase and α-amylase are enzymes which are associated with diabetic II. These enzymes break macromolecules of sugar into monosugar molecules which is soluble in body, hence increase the sugar level in blood. There is need to develop economical and save inhibitors to prevent them from breaking sugar macromolecules to soluble molecules which will control the level of sugar in blood. Therefore, we synthesized indole-based derivatives (1-18) and evaluated as dual inhibitor for α-glucosidase and α-amylase. These chemical scaffolds were built with variation in aryl ring which were found active with good to moderate activity for α-glucosidase having IC50 value ranging from 13.99 ± 0.10 to 59.09 ± 0.30 μM when compared with standard acarbose with IC50 of 11.29 ± 0.10 μM; for α-amylase IC50 value ranging from 13.14 ± 0.10 to 58.99 ± 0.30 μM when compared with the standard acarbose with IC50 of 11.12 ± 0.10 μM. Structure activity relationship (SAR) has been established for all compounds. Enzymatic kinetic study and molecular docking study have been carried out to investigate the binding interactions α-glucosidase and α-amylase enzyme.
    Matched MeSH terms: alpha-Glucosidases
  5. Azizan A, Xin LA, Abdul Hamid NA, Maulidiani M, Mediani A, Abdul Ghafar SZ, et al.
    Foods, 2020 Feb 11;9(2).
    PMID: 32053982 DOI: 10.3390/foods9020173
    Pineapple (Ananascomosus) waste is a promising source of metabolites for therapeutics, functional foods, and cosmeceutical applications. This study strives to characterize the complete metabolite profiles of a variety of MD2 pineapple waste extracts. Metabolomics strategies were utilized to identify bioactive metabolites of this variety prepared with different solvent ratios. Each pineapple waste extract was first screened for total phenolic content, 2,2-diphenyl-1-picrylhydrazyl free radical scavenging, nitric oxide scavenging, and α-glucosidase inhibitory activities. The highest TPC was found in all samples of the peel, crown, and core extracted using a 50% ethanol ratio, even though the results were fairly significant than those obtained for other ethanol ratios. Additionally, crown extracted with a 100% ethanol ratio demonstrated the highest potency in DPPH and NO scavenging activity, with IC50 values of 296.31 and 338.52 µg/mL, respectively. Peel extracted with 100% ethanol exhibited the highest α-glucosidase inhibitory activity with an IC50 value of 92.95 µg/mL. Then, the extracts were analyzed and the data from 1H NMR were processed using multivariate data analysis. A partial least squares and correlogram plot suggested that 3-methylglutaric acid, threonine, valine, and α-linolenic acid were the main contributors to the antioxidant activities, whereas epicatechin was responsible for the α-glucosidase inhibitory activity. Relative quantification further supported that 100% crown extract was among the extracts that possessed the most abundant potential metabolites. The present study demonstrated that the crown and peel parts of MD2 pineapple extracted with 100% ethanol are potentially natural sources of antioxidants and α-glucosidase inhibitors, respectively.
    Matched MeSH terms: alpha-Glucosidases
  6. Mohd Bukhari DA, Siddiqui MJ, Shamsudin SH, Rahman MM, So'ad SZM
    J Pharm Bioallied Sci, 2017 Jul-Sep;9(3):164-170.
    PMID: 28979070 DOI: 10.4103/jpbs.JPBS_35_17
    Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs) from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes.
    Matched MeSH terms: alpha-Glucosidases
  7. Kasim N, Afzan A, Mediani A, Low KH, Ali AM, Mat N, et al.
    Phytochem Anal, 2022 Dec;33(8):1235-1245.
    PMID: 36192845 DOI: 10.1002/pca.3175
    INTRODUCTION: Ficus deltoidea Jack (Moraceae) is a plant used in Malaysia to treat various ailments, including diabetes. The presence of several varieties raises essential questions regarding which is the potential bioactive variety and what are the bioactive metabolites.

    OBJECTIVES: Here, we explored the phytochemical diversity of the seven varieties from Peninsular Malaysia using Nuclear Magnetic Resonance (NMR) and Liquid Chromatography-Mass Spectrometry (LC-MS) analyses and correlated it with the α-glucosidase inhibitory activity.

    METHODOLOGY: The Nuclear Overhauser Effect Spectroscopy (NOESY) One-Dimensional (1D)-NMR and LC-MS data were processed, annotated, and correlated with in vitro α-glucosidase inhibitory using multivariate data analysis.

    RESULTS: The α-glucosidase results demonstrated that different varieties have varying inhibitory effects, with the highest inhibition rate being F. deltoidea var. trengganuensis and var. kunstleri. Furthermore, diverse habitats and plant ages could also influence the inhibitory rate. The heat map from NMR and LC-MS profiles showed unique patterns according to varying levels of α-glucosidase inhibition rate. The Partial Least Squares (PLS) model constructed from both NMR and LC-MS further confirmed the correlation between the α-glucosidase inhibition rate of F. deltoidea varieties and its metabolite profiles. The Variable Influence on Projection (VIP) and correlation coefficient (p(corr)) values values were used to determine the highly relevant metabolites for explaining the anticipated inhibitory action.

    CONCLUSION: NMR and LC-MS annotations allow the identification of flavan-3-ols and proanthocyanidins as the key bioactive factors. Our current results demonstrated the value of multivariate data analysis to predict the quality of herbal materials from both biological and chemical aspects.

    Matched MeSH terms: alpha-Glucosidases
  8. Alrabie A, Al-Rabie NA, Al Saeedy M, Al Adhreai A, Al-Qadsy I, Farooqui M
    Nat Prod Res, 2023 Mar;37(6):1016-1022.
    PMID: 35801965 DOI: 10.1080/14786419.2022.2097227
    Liquid Chromatography-Mass Spectrometry (LC-MS) analysis of methanol extract of Martynia annua seed revealed the presence of haploperozide and austricine. For safety, heavy metals content investigation of plant powder using the Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) technique showed that the toxic metals (Pb: 2.07 mg/kg; Cd: 0.07 mg/kg; and As: 0.18 mg/kg) concentrations were found to be below the permissible limit. The extract demonstrated significant antibacterial activity against E. coli (MIC value 125 g/mL). Furthermore, it was effective in inhibiting both α-glucosidase and α-amylase enzymes with a high percentage and IC50 values were 42.28 ± 0.39 µg/mL and 34.11 ± 0.31 µg/mL, respectively. These findings were supported by a molecular docking study, some of the phytochemicals showed higher docking score values than references. However, Martynia annua seeds are safe to consume because they contain low levels of toxic heavy metals and possess antibacterial and anti-diabetic properties.
    Matched MeSH terms: alpha-Glucosidases
  9. Ahda M, Jaswir I, Khatib A, Ahmed QU, Mahfudh N, Ardini YD, et al.
    Sci Rep, 2023 Oct 09;13(1):17012.
    PMID: 37813908 DOI: 10.1038/s41598-023-43251-2
    Ocimum aristatum, commonly known as O. stamineus, has been widely studied for its potential as an herbal medicine candidate. This research aims to compare the efficacy of water and 100% ethanolic extracts of O. stamineus as α-glucosidase inhibitors and antioxidants, as well as toxicity against zebrafish embryos. Based on the study findings, water extract of O. stamineus leaves exhibited superior inhibition activity against α-glucosidase, ABTS, and DPPH, with IC50 values of approximately 43.623 ± 0.039 µg/mL, 27.556 ± 0.125 µg/mL, and 95.047 ± 1.587 µg/mL, respectively. The major active compounds identified in the extract include fatty acid groups and their derivates such as linoleic acid, α-eleostearic acid, stearic acid, oleanolic acid, and corchorifatty acid F. Phenolic groups such as caffeic acid, rosmarinic acid, 3,4-Dihydroxybenzaldehyde, norfenefrine, caftaric acid, and 2-hydroxyphenylalanine and flavonoids and their derivates including 5,7-Dihydroxychromone, 5,7-Dihydroxy-2,6-dimethyl-4H-chromen-4-one, eupatorin, and others were also identified in the extract. Carboxylic acid groups and triterpenoids such as azelaic acid and asiatic acid were also present. This study found that the water extract of O. stamineus is non-toxic to zebrafish embryos and does not affect the development of zebrafish larvae at concentrations lower than 500 µg/mL. These findings highlight the potential of the water extract of O. stamineus as a valuable herbal medicine candidate, particularly for its potent α-glucosidase inhibition and antioxidant properties, and affirm its safety in zebrafish embryos at tested concentrations.
    Matched MeSH terms: alpha-Glucosidases
  10. El Hachlafi N, Benkhaira N, Al-Mijalli SH, Mrabti HN, Abdnim R, Abdallah EM, et al.
    Biomed Pharmacother, 2023 Aug;164:114937.
    PMID: 37267633 DOI: 10.1016/j.biopha.2023.114937
    Mentha suaveolens, Lavandula stoechas, and Ammi visnaga are widely used in Moroccan folk medicine against several pathological disorders, including diabetes and infectious diseases. This work was designed to determine the chemical profile of M. suaveolens (MSEO), L. stoechas (LSEO), and A. visnaga (AVEO) essential oils and assess their antimicrobial, antioxidant, and antidiabetic effects. The volatile components of LSEO, AVEO, and MSEO were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The in vitro antidiabetic activity was assessed using α-amylase and α-glucosidase enzymes, while DPPH, FRAP, and β-carotene/linoleic acid methods were used to determine the antioxidant capacity. The antimicrobial activities were investigated using disc diffusion and broth-microdilution assays. GC-MS investigation revealed that the main components were fenchone (29.77 %) and camphor (24.9 %) for LSEO, and linalool (38.29 %) for AVEO, while MSEO was mainly represented by piperitenone oxide (74.55 %). The results of the antimicrobial evaluation showed that all examined essential oils (EOs) had noticeable antimicrobial activity against both bacteria and yeast, especially Micrococcus luteus and Bacillus subtilis. The MIC, MBC, and MFC values were ranged from 0.015 % to 0.5 %. The MBC/MIC and MFC/MIC ratios were less than or equal to 4.0 % (v/v), indicating their noticeable bactericidal and candidacidal efficacy. Moreover, the three EOs showed significant inhibitory effects on α-amylase and α-glucosidase (p 
    Matched MeSH terms: alpha-Glucosidases
  11. Mohamed EA, Ahmad M, Ang LF, Asmawi MZ, Yam MF
    PMID: 26649063 DOI: 10.1155/2015/754931
    In the present study, a 50% ethanolic extract of Orthosiphon stamineus was tested for its α-glucosidase inhibitory activity. In vivo assays of the extract (containing 1.02%, 3.76%, and 3.03% of 3'hydroxy-5,6,7,4'-tetramethoxyflavone, sinensetin, and eupatorin, resp.) showed that it possessed an inhibitory activity against α-glucosidase in normal rats loaded with starch and sucrose. The results showed that 1000 mg/kg of the 50% ethanolic extract of O. stamineus significantly (P < 0.05) decreased the plasma glucose levels of the experimental animals in a manner resembling the effect of acarbose. In streptozotocin-induced diabetic rats, only the group treated with 1000 mg/kg of the extract showed significantly (P < 0.05) lower plasma glucose levels after starch loading. Hence, α-glucosidase inhibition might be one of the mechanisms by which O. stamineus extract exerts its antidiabetic effect. Furthermore, our findings indicated that the 50% ethanolic extract of O. stamineus can be considered as a potential agent for the management of diabetes mellitus.
    Matched MeSH terms: alpha-Glucosidases
  12. Chandradevan M, Simoh S, Mediani A, Ismail NH, Ismail IS, Abas F
    PMID: 32047522 DOI: 10.1155/2020/3238561
    This study aimed to determine the total phenolic content, DPPH scavenging, α-glucosidase, and nitric oxide (NO) inhibition of Gynura procumbens and Cleome gynandra extracts obtained with five different ethanolic concentrations. The findings showed that the 100% ethanolic extract of G. procumbens had the highest phenolic content and the lowest IC50 values for DPPH scavenging and NO inhibition activity compared to the properties of the other extracts. For C. gynandra, the 20% and 100% ethanolic extracts had comparably high total phenolic contents, and the latter possessed the lowest IC50 value in the NO inhibition assay. In addition, the 20% ethanolic extract of C. gynandra had the lowest IC50 value in the DPPH scavenging assay. However, none of the extracts from either herb had the ability to inhibit α-glucosidase enzyme. Pearson correlation analysis indicated a strong relationship between the phenolic content and DPPH scavenging activity in both herb extracts. A moderately strong relationship was also observed between the phenolic content and NO inhibition in G. procumbens extracts and not in C. gynandra extracts. The UHPLC-ESI-Orbitrap-MS revealed major phenolics from the groups of hydroxycinnamic acids, hydroxybenzoic acids, and flavonoid derivatives from both herbs, which could be the key contributors to their bioactivities. Among the identified metabolites, 24 metabolites were tentatively assigned for the first time from both species of studied herbs. These two herbs could be recommended as prospective natural products with valuable medicinal properties.
    Matched MeSH terms: alpha-Glucosidases
  13. Nawawi HM, Yazid TN, Ismail F, Khalid BA
    Asia Pac J Clin Nutr, 2000 Mar;9(1):41-5.
    PMID: 24394314
    Acarbose inhibits intestinal alpha-glucosidases resulting in diminished and delayed postprandial hyperglycaemia (PPH). Studies on effects of acarbose on postprandial lipaemia (PPL) have been inconclusive. Little is known about the effects of acarbose on PPH and PPL following intake of a polysaccharide diet. We studied 30 type 2 diabetic patients on dietary and/or oral hypoglycaemic agent(s). Thirty patients were recruited for food A (nasi lemak), 28 for food B (mee goreng) and 28 for food C (roti telur), which represent the typical diets of the three main races in Malaysia. Serial blood samples were taken at 15 min before and up to 240 min after each food intake, without acarbose. Subsequently, three doses of 50 mg acarbose were given orally and the same procedure was repeated the following day. There were significantly lower mean increments in plasma glucose levels after compared to before acarbose treatment 30, 45 and 60 min for food A and at 30, 45, 60, 120, 180 and 240 min for food C, but no significant difference was noted for food B. There was a significantly lower mean fasting glucose level after compared with before acarbose treatment following intake of food A and C but not food B. Short-term treatment with acarbose caused significant diminished and delayed PPH response with food A and C but not with food B. Acarbose was more effective in reducing PPH response in polysaccharide foods with a higher and earlier postprandial glucose peak than in those with a lower and lagged peak. There were no significant differences in the mean fasting or postprandial triglyceride levels before and after acarbose treatment, following intake of all three foods for up to 4 hours. Depending on the food absorption pattern, overnight low dose treatment with acarbose leads to diminished fasting and peak plasma glucose levels, and delayed PPH but insignificant reduction in postprandial lipaemia in poorly controlled type 2 diabetics following intake of racially different Malaysian food.
    Matched MeSH terms: alpha-Glucosidases
  14. Ooi KL, Loh SI, Tan ML, Muhammad TS, Sulaiman SF
    J Ethnopharmacol, 2015 Mar 13;162:55-60.
    PMID: 25554642 DOI: 10.1016/j.jep.2014.12.030
    The juice of the entire fresh herb and infusion of dried sample of Murdannia bracteata are consumed to treat liver cancer and diabetes in Malaysia. However, no scientific evidence of these bioactivities has been reported.
    Matched MeSH terms: alpha-Glucosidases/metabolism
  15. Wahab NA, Abdullah N, Aminudin N
    Biomed Res Int, 2014;2014:131607.
    PMID: 25243114 DOI: 10.1155/2014/131607
    Pleurotus pulmonarius has been reported to have a potent remedial effect on diabetic property and considered to be an alternative for type 2 diabetes mellitus treatment. This study aimed to investigate the antidiabetic properties of ammonium sulphate precipitated protein fractions from P. pulmonarius basidiocarps. Preliminary results demonstrated that 30% (NH4)2SO4 precipitated fraction (F30) inhibited Saccharomyces cerevisiae α-glucosidase activity (24.18%), and 100% (NH4)2SO4 precipitated fraction (F100) inhibited porcine pancreatic α-amylase activity (41.80%). Following RP-HPLC purification, peak 3 from F30 fraction demonstrated inhibition towards α-glucosidase at the same time with meagre inhibition towards α-amylase activity. Characterisation of proteins using MALDI-TOF/TOF MS demonstrated the presence of four different proteins, which could be implicated in the regulation of blood glucose level via various mechanisms. Therefore, this study revealed the presence of four antidiabetic-related proteins which are profilin-like protein, glyceraldehyde-3-phosphate dehydrogenase-like protein, trehalose phosphorylase-like (TP-like) protein, and catalase-like protein. Hence, P. pulmonarius basidiocarps have high potential in lowering blood glucose level, reducing insulin resistance and vascular complications.
    Matched MeSH terms: alpha-Glucosidases/metabolism
  16. Ado MA, Abas F, Ismail IS, Ghazali HM, Shaari K
    J Sci Food Agric, 2015 Feb;95(3):635-42.
    PMID: 25048579 DOI: 10.1002/jsfa.6832
    The aim of the current study was (i) to evaluate the bioactive potential of the leaf methanolic extract of Cynometra cauliflora L., along with its respective hexane, dichloromethane, ethyl acetate (EtOAc), n-butanol (n-BuOH) and aqueous fractions, in inhibiting the enzymes α-glucosidase, acetylcholinesterase (AChE) and tyrosinase as well as evaluating their antioxidant activities. (ii) In addition, in view of the limited published information regarding the metabolite profile of C. cauliflora, we further characterized the profiles of the EtOAc and n-BuOH fractions using liquid chromatography-diode array detection-electrospray ionization-tandem mass spectrometry.
    Matched MeSH terms: alpha-Glucosidases/metabolism*
  17. Javadi N, Abas F, Abd Hamid A, Simoh S, Shaari K, Ismail IS, et al.
    J Food Sci, 2014 Jun;79(6):C1130-6.
    PMID: 24888400 DOI: 10.1111/1750-3841.12491
    Cosmos caudatus, which is known as "Ulam Raja," is an herbal plant used in Malaysia to enhance vitality. This study focused on the evaluation of the α-glucosidase inhibitory activity of different ethanolic extracts of C. caudatus. Six series of samples extracted with water, 20%, 40%, 60%, 80%, and 100% ethanol (EtOH) were employed. Gas chromatography-mass spectrometry (GC-MS) and orthogonal partial least-squares (OPLS) analysis was used to correlate bioactivity of different extracts to different metabolite profiles of C. caudatus. The obtained OPLS scores indicated a distinct and remarkable separation into 6 clusters, which were indicative of the 6 different ethanol concentrations. GC-MS can be integrated with multivariate data analysis to identify compounds that inhibit α-glucosidase activity. In addition, catechin, α-linolenic acid, α-D-glucopyranoside, and vitamin E compounds were identified and indicate the potential α-glucosidase inhibitory activity of this herb.
    Matched MeSH terms: alpha-Glucosidases/metabolism*
  18. Yusoff NA, Ahmad M, Al-Hindi B, Widyawati T, Yam MF, Mahmud R, et al.
    Nutrients, 2015 Aug;7(8):7012-26.
    PMID: 26308046 DOI: 10.3390/nu7085320
    Nypa fruticans Wurmb. vinegar, commonly known as nipa palm vinegar (NPV) has been used as a folklore medicine among the Malay community to treat diabetes. Early work has shown that aqueous extract (AE) of NPV exerts a potent antihyperglycemic effect. Thus, this study is conducted to evaluate the effect of AE on postprandial hyperglycemia in an attempt to understand its mechanism of antidiabetic action. AE were tested via in vitro intestinal glucose absorption, in vivo carbohydrate tolerance tests and spectrophotometric enzyme inhibition assays. One mg/mL of AE showed a comparable outcome to the use of phloridzin (1 mM) in vitro as it delayed glucose absorption through isolated rat jejunum more effectively than acarbose (1 mg/mL). Further in vivo confirmatory tests showed AE (500 mg/kg) to cause a significant suppression in postprandial hyperglycemia 30 min following respective glucose (2 g/kg), sucrose (4 g/kg) and starch (3 g/kg) loadings in normal rats, compared to the control group. Conversely, in spectrophotometric enzymatic assays, AE showed rather a weak inhibitory activity against both α-glucosidase and α-amylase when compared with acarbose. The findings suggested that NPV exerts its anti-diabetic effect by delaying carbohydrate absorption from the small intestine through selective inhibition of intestinal glucose transporters, therefore suppressing postprandial hyperglycemia.
    Matched MeSH terms: alpha-Glucosidases/metabolism
  19. Taha M, Ismail NH, Imran S, Wadood A, Rahim F, Saad SM, et al.
    Bioorg Chem, 2016 Jun;66:117-23.
    PMID: 27149363 DOI: 10.1016/j.bioorg.2016.04.006
    Twenty derivatives of 5-aryl-2-(6'-nitrobenzofuran-2'-yl)-1,3,4-oxadiazoles (1-20) were synthesized and evaluated for their α-glucosidase inhibitory activities. Compounds containing hydroxyl and halogens (1-6, and 8-18) were found to be five to seventy folds more active with IC50 values in the range of 12.75±0.10-162.05±1.65μM, in comparison with the standard drug, acarbose (IC50=856.45±5.60μM). Current study explores the α-glucosidase inhibition of a hybrid class of compounds of oxadiazole and benzofurans. These findings may invite researchers to work in the area of treatment of hyperglycemia. Docking studies showed that most compounds are interacting with important amino acids Glu 276, Asp 214 and Phe 177 through hydrogen bonds and arene-arene interaction.
    Matched MeSH terms: alpha-Glucosidases/metabolism*
  20. Iftikhar M, Shahnawaz, Saleem M, Riaz N, Aziz-Ur-Rehman, Ahmed I, et al.
    Arch Pharm (Weinheim), 2019 Dec;352(12):e1900095.
    PMID: 31544284 DOI: 10.1002/ardp.201900095
    A series of new N-aryl/aralkyl derivatives of 2-methyl-2-{5-(4-chlorophenyl)-1,3,4-oxadiazole-2ylthiol}acetamide were synthesized by successive conversions of 4-chlorobenzoic acid (a) into ethyl 4-chlorobenzoate (1), 4-chlorobenzoylhydrazide (2) and 5-(4-chlorophenyl)-1,3,4-oxadiazole-2-thiol (3), respectively. The required array of compounds (6a-n) was obtained by the reaction of 1,3,4-oxadiazole (3) with various electrophiles (5a-n) in the presence of DMF (N,N-dimethylformamide) and sodium hydroxide at room temperature. The structural determination of these compounds was done by infrared, 1 H-NMR (nuclear magnetic resonance), 13 C-NMR, electron ionization mass spectrometry, and high-resolution electron ionization mass spectrometry analyses. All compounds were evaluated for their α-glucosidase inhibitory potential. Compounds 6a, 6c-e, 6g, and 6i were found to be promising inhibitors of α-glucosidase with IC50 values of 81.72 ± 1.18, 52.73 ± 1.16, 62.62 ± 1.15, 56.34 ± 1.17, 86.35 ± 1.17, 52.63 ± 1.16 µM, respectively. Molecular modeling and ADME (absorption, distribution, metabolism, excretion) predictions supported the findings. The current synthesized library of compounds was achieved by utilizing very common raw materials in such a way that the synthesized compounds may prove to be promising drug leads.
    Matched MeSH terms: alpha-Glucosidases/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links