Displaying publications 61 - 80 of 100 in total

Abstract:
Sort:
  1. Zokaeifar H, Balcázar JL, Saad CR, Kamarudin MS, Sijam K, Arshad A, et al.
    Fish Shellfish Immunol, 2012 Oct;33(4):683-9.
    PMID: 22659618 DOI: 10.1016/j.fsi.2012.05.027
    We studied the effect of two probiotic Bacillus subtilis strains on the growth performance, digestive enzyme activity, immune gene expression and disease resistance of juvenile white shrimp (Litopenaeus vannamei). A mixture of two probiotic strains, L10 and G1 in equal proportions, was administered at two different doses 10(5) (BM5) and 10(8) (BM8) CFU g(-1) feed to shrimp for eight weeks. In comparison to untreated control group, final weight, weight gain and digestive enzyme activity were significantly greater in shrimp fed BM5 and BM8 diets. Significant differences for specific growth rate (SGR) and survival were recorded in shrimp fed BM8 diet as compared with the control; however, no significant differences were recorded for food conversion ratio (FCR) among all the experimental groups. Eight weeks after the start of the feeding period, shrimp were challenged with Vibrio harveyi. Statistical analysis revealed significant differences in shrimp survival between probiotic and control groups. Cumulative mortality of the control group was 63.3%, whereas cumulative mortality of the shrimp that had been given probiotics was 20.0% with BM8 and 33.3% with BM5. Subsequently, real-time PCR was employed to determine the mRNA levels of prophenoloxidase (proPO), peroxinectin (PE), lipopolysaccharide- and β-1,3-glucan-binding protein (LGBP) and serine protein (SP). The expression of all immune-related genes studied was significantly up-regulated (P 
    Matched MeSH terms: Immunity, Innate*
  2. Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S
    Mol Biol Rep, 2012 Feb;39(2):1377-86.
    PMID: 21614523 DOI: 10.1007/s11033-011-0872-5
    The prophenoloxidase activating system is an important innate immune response against microbial infections in invertebrates. The major enzyme, phenoloxidase, is synthesized as an inactive precursor and its activation to an active enzyme is mediated by a cascade of clip domain serine proteinases. In this study, a cDNA encoding a prophenoloxidase activating enzyme-III from the giant freshwater prawn Macrobrachium rosenbergii, designated as MrProAE-III, was identified and characterized. The full-length cDNA contains an open reading frame of 1110 base pair (bp) encoding a predicted protein of 370 amino acids including an 22 amino acid signal peptide. The MrProAE-III protein exhibits a characteristic sequence structure of a long serine proteases-trypsin domain and an N- and C-terminal serine proteases-trypsin family histidine active sites, respectively, which together are the characteristics of the clip-serin proteases. Sequence analysis showed that MrProAE-III exhibited the highest amino acid sequence similarity (63%) to a ProAE-III from Atlantic blue crab, Callinectes sapidus. MrProAE-III mRNA and enzyme activity of MrProAE-III were detectable in all examined tissues, including hepatopancreas, hemocytes, pleopods, walking legs, eye stalk, gill, stomach, intestine, brain and muscle with the highest level of both in hepatopancreas. This is regulated after systemic infectious hypodermal and hematopoietic necrosis virus infection supporting that it is an immune-responsive gene. These results indicate that MrProAE-III functions in the proPO system and is an important component in the prawn immune system.
    Matched MeSH terms: Immunity, Innate/genetics*
  3. Chin CY, Monack DM, Nathan S
    Immunology, 2012 Apr;135(4):312-32.
    PMID: 22136109 DOI: 10.1111/j.1365-2567.2011.03544.x
    Diabetes mellitus is a predisposing factor of melioidosis, contributing to higher mortality rates in diabetics infected with Burkholderia pseudomallei. To investigate how diabetes alters the inflammatory response, we established a streptozotocin (STZ) -induced diabetic murine acute-phase melioidosis model. Viable B. pseudomallei cells were consistently detected in the blood, liver and spleen during the 42-hr course of infection but the hyperglycaemic environment did not increase the bacterial burden. However, after 24 hr, granulocyte counts increased in response to infection, whereas blood glucose concentrations decreased over the course of infection. A genome-wide expression analysis of the STZ-diabetic murine acute melioidosis liver identified ~1000 genes whose expression was altered in the STZ-diabetic mice. The STZ-diabetic host transcriptional response was compared with the normoglycaemic host transcriptional response recently reported by our group. The microarray data suggest that the presence of elevated glucose levels impairs the host innate immune system by delaying the identification and recognition of B. pseudomallei surface structures. Consequently, the host is unable to activate the appropriate innate immune response over time, which may explain the increased susceptibility to melioidosis in the STZ-diabetic host. Nevertheless, a general 'alarm signal' of infection as well as defence programmes are still triggered by the STZ-diabetic host, although only 24 hr after infection. In summary, this study demonstrates that in the face of a B. pseudomallei acute infection, poor glycaemic control impaired innate responses during the early stages of B. pseudomallei infection, contributing to the increased susceptibility of STZ-induced diabetics to this fatal disease.
    Matched MeSH terms: Immunity, Innate/immunology*
  4. Rezaei S, Faseleh Jahromi M, Liang JB, Zulkifli I, Farjam AS, Laudadio V, et al.
    Poult Sci, 2015 Oct;94(10):2414-20.
    PMID: 26240398 DOI: 10.3382/ps/pev216
    This study examined the prebiotic effects of oligosaccharides extract from palm kernel expeller (OligoPKE) on growth performance, cecal microbiota and immune response of broiler chickens. A total of ninety 1-day-old broiler chicks (Cobb-500) were randomly allocated to three treatment groups of six pens (replicates) with five birds per pen. Dietary treatments were: (i) basal diet as control, (ii) basal diet plus 0.5% OligoPKE, and (iii) basal diet plus 1% OligoPKE. Birds growth traits (ADG, ADFI and G:F) were measured during the starter (1-21 day), finisher (22-35 day) and the entire experimental periods. Blood and cecal digesta samples were collected from chickens at 21 and 35 days of age (DOA). Microbial quantification of the digesta samples, white blood cells including heterophil, lymphocyte, monocyte, eosinophil, basophil counts and immunoglobulin (IgA and IgM) were also determined. OligoPKE had no effect on ADG and ADFI throughout the study period, but chickens fed OligoPKE supplemented diet had better (P < 0.05) G:F during finisher and overall rearing periods. Supplementing OligoPKE did not significantly alter the birds' microbiota of the cecal digesta. At 21 DOA, blood IgA concentration increased significantly when birds fed 1% OligoPKE in diet recorded compared to the control treatment. Similar observations were also recorded in birds at 35 DOA. Hematological data showed that heterophil and basophil counts of chickens fed OligoPKE supplement were lower than those in control group at 21 DOA. Our findings suggested that OligoPKE improved immune responses in broiler chickens, especially at younger age when the immune system is not still fully developed.
    Matched MeSH terms: Immunity, Innate/drug effects*
  5. Ahmad W, Jantan I, Kumolosasi E, Bukhari SN
    Drug Des Devel Ther, 2015;9:2961-73.
    PMID: 26089645 DOI: 10.2147/DDDT.S85405
    Tinospora crispa (TC) has been used in folkloric medicine for the treatment of various diseases and has been reported for several pharmacological activities. However, the effects of TC extract on the immune system are largely unknown. Therefore, the present study was aimed to investigate the immunomodulatory effects of a standardized 80% ethanol extract of the stem of TC on innate immune responses. Male Wistar Kyoto rats were treated daily at 100 mg/kg, 200 mg/kg, and 400 mg/kg doses of the extract for 21 days by oral gavage. The immunomodulatory potential of TC was evaluated by determining its effect on chemotaxis and phagocytic activity of neutrophils isolated from the blood of rats. To further elucidate the mechanism of action, its effects on the proliferation of T- and B-lymphocytes and T-lymphocytes subsets (CD4+ and CD8+) and on the secretion of Th1 and Th2 cytokines were also monitored. The main components of the extracts, syringin and magnoflorine, were identified and quantitatively analyzed in the extracts by using a validated reversed-phase high-performance liquid chromatography method. It was observed that the chemotactic activity of neutrophils obtained from extract-treated rats increased as compared to controls. A dose-dependent increase in the number of migrated cells and phagocytosis activity of neutrophils was observed. Dose-dependent increase was also observed in the T- and B-lymphocytes proliferation stimulated with concanavalin A (5 μg/mL) and lipopolysaccharide (10 μg/mL), and was statistically significant at 400 mg/kg (P>0.01). Apart from cell-mediated immune response, the concentrations of Th1 (TNF-α, IL-2, and IFN-γ) and Th2 (IL-4) cytokines were significantly increased in sera of rats treated with different doses as compared with the control group. From these findings, it can be concluded that TC possesses immunostimulatory activity and has therapeutic potential for the prevention of immune diseases.
    Matched MeSH terms: Immunity, Innate/drug effects*
  6. Aznan AS, Lee KL, Low CF, Iberahim NA, Wan Ibrahim WN, Musa N, et al.
    Fish Shellfish Immunol, 2018 Jul;78:338-345.
    PMID: 29684603 DOI: 10.1016/j.fsi.2018.04.033
    Outbreaks of edwardsiellosis have severe impact on the aquaculture production of African catfish Clarias gariepinus. In this study, feed supplemented with apple mangrove Sonneratia caseolaris extract was evaluated for its protective effect against Edwardsiella tarda infection in African catfish. Results showed an increase in growth performance and higher survival rate in the treatment groups in a dose dependent manner. Haematological analyses showed an increase in white blood cell count in the treatment groups. Histopathological analysis revealed degenerative changes and regeneration of liver tissue architecture in both the control and treatment groups. However, the presence of inflammatory cells was found exclusively in the kidney of T3 treatment group that was supplemented with the highest dose of extract at 3.17 mg/ml, which inferred the activation of immune response in the fish. Contrast to the deteriorative alteration observed in the kidney of the control group due to E. tarda infection, treatment group exhibited tissue regeneration and well-defined kidney tissue architecture at 3 dpi. Taken together, these results demonstrated that supplementation with the methanol extract of S. caseolaris possesses protective effect in African catfish against the infection of E. tarda.
    Matched MeSH terms: Immunity, Innate*
  7. Ibrahim ZA, Armour CL, Phipps S, Sukkar MB
    Mol Immunol, 2013 Dec;56(4):739-44.
    PMID: 23954397 DOI: 10.1016/j.molimm.2013.07.008
    The innate immune system forms the first line of protection against infectious and non-infectious tissue injury. Cells of the innate immune system detect pathogen-associated molecular patterns or endogenous molecules released as a result of tissue injury or inflammation through various innate immune receptors, collectively termed pattern-recognition receptors. Members of the Toll-like receptor (TLR) family of pattern-recognition receptors have well established roles in the host immune response to infection, while the receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor predominantly involved in the recognition of endogenous molecules released in the context of infection, physiological stress or chronic inflammation. RAGE and TLRs share common ligands and signaling pathways, and accumulating evidence points towards their co-operative interaction in the host immune response. At present however, little is known about the mechanisms that result in TLR versus RAGE signalling or RAGE-TLR cross-talk in response to their shared ligands. Here we review what is known in relation to the physicochemical basis of ligand interactions between TLRs and RAGE, focusing on three shared ligands of these receptors: HMGB1, S100A8/A9 and LPS. Our aim is to discuss what is known about differential ligand interactions with RAGE and TLRs and to highlight important areas for further investigation so that we may better understand the role of these receptors and their relationship in host defense.
    Matched MeSH terms: Immunity, Innate/immunology*
  8. Kumari R, Guo Z, Kumar A, Wiens M, Gangappa S, Katz JM, et al.
    Antiviral Res, 2020 Apr;176:104747.
    PMID: 32092305 DOI: 10.1016/j.antiviral.2020.104747
    Influenza virus non-structural protein 1 (NS1) counteracts host antiviral innate immune responses by inhibiting Retinoic acid inducible gene-I (RIG-I) activation. However, whether NS1 also specifically regulates RIG-I transcription is unknown. Here, we identify a CCAAT/Enhancer Binding Protein beta (C/EBPβ) binding site in the RIG-I promoter as a repressor element, and show that NS1 promotes C/EBPβ phosphorylation and its recruitment to the RIG-I promoter as a C/EBPβ/NS1 complex. C/EBPβ overexpression and siRNA knockdown in human lung epithelial cells resulted in suppression and activation of RIG-I expression respectively, implying a negative regulatory role of C/EBPβ. Further, C/EBPβ phosphorylation, its interaction with NS1 and occupancy at the RIG-I promoter was associated with RIG-I transcriptional inhibition. These findings provide an important insight into the molecular mechanism by which influenza NS1 commandeers RIG-I transcriptional regulation and suppresses host antiviral responses.
    Matched MeSH terms: Immunity, Innate*
  9. Sung YY, Dhaene T, Defoirdt T, Boon N, MacRae TH, Sorgeloos P, et al.
    Cell Stress Chaperones, 2009 Nov;14(6):603-9.
    PMID: 19373565 DOI: 10.1007/s12192-009-0112-2
    Feeding of bacterially encapsulated heat shock proteins (Hsps) to invertebrates is a novel way to limit Vibrio infection. As an example, ingestion of Escherichia coli overproducing prokaryotic Hsps significantly improves survival of gnotobiotically cultured Artemia larvae upon challenge with pathogenic Vibrio campbellii. The relationship between Hsp accumulation and enhanced resistance to infection may involve DnaK, the prokaryotic equivalent to Hsp70, a major molecular chaperone in eukaryotic cells. In support of this proposal, heat-stressed bacterial strains LVS 2 (Bacillus sp.), LVS 3 (Aeromonas hydrophila), LVS 8 (Vibrio sp.), GR 8 (Cytophaga sp.), and GR 10 (Roseobacter sp.) were shown in this work to be more effective than nonheated bacteria in protecting gnotobiotic Artemia larvae against V. campbellii challenge. Immunoprobing of Western blots and quantification by enzyme-linked immunosorbent assay revealed that the amount of DnaK in bacteria and their ability to enhance larval resistance to infection by V. campbellii are correlated. Although the function of DnaK is uncertain, it may improve tolerance to V. campbellii via immune stimulation, a possibility of significance from a fundamental perspective and also because it could be applied in aquaculture, a major method of food production.
    Matched MeSH terms: Immunity, Innate*
  10. Jarolim P, Palek J, Amato D, Hassan K, Sapak P, Nurse GT, et al.
    Proc Natl Acad Sci U S A, 1991 Dec 15;88(24):11022-6.
    PMID: 1722314
    Southeast Asian ovalocytosis (SAO) is a hereditary condition that is widespread in parts of Southeast Asia. The ovalocytic erythrocytes are rigid and resistant to invasion by various malarial parasites. We have previously found that the underlying defect in SAO involves band 3 protein, the major transmembrane protein, which has abnormal structure and function. We now report two linked mutations in the erythrocyte band 3 gene in SAO: (i) a deletion of codons 400-408 and (ii) a substitution, A----G, in the first base of codon 56 leading to substitution of Lys-56 by Glu-56. The first defect leads to a deletion of nine amino acids in the boundary of cytoplasmic and membrane domains of band 3. This defect has been detected in all 30 ovalocytic subjects from Malaysia, the Philippines, and two unrelated coastal regions of Papua New Guinea, whereas it was absent in all 30 controls from Southeast Asia and 20 subjects of different ethnic origin from the United States. The Lys-56----Glu substitution has likewise been found in all SAO subjects. However, it has also been detected in 5 of the 50 control subjects, suggesting that it represents a linked polymorphism. We conclude that the deletion of codons 400-408 in the band 3 gene constitutes the underlying molecular defect in SAO.
    Matched MeSH terms: Immunity, Innate/genetics
  11. Nejat N, Cahill DM, Vadamalai G, Ziemann M, Rookes J, Naderali N
    Mol Genet Genomics, 2015 Oct;290(5):1899-910.
    PMID: 25893418 DOI: 10.1007/s00438-015-1046-2
    Invasive phytoplasmas wreak havoc on coconut palms worldwide, leading to high loss of income, food insecurity and extreme poverty of farmers in producing countries. Phytoplasmas as strictly biotrophic insect-transmitted bacterial pathogens instigate distinct changes in developmental processes and defence responses of the infected plants and manipulate plants to their own advantage; however, little is known about the cellular and molecular mechanisms underlying host-phytoplasma interactions. Further, phytoplasma-mediated transcriptional alterations in coconut palm genes have not yet been identified. This study evaluated the whole transcriptome profiles of naturally infected leaves of Cocos nucifera ecotype Malayan Red Dwarf in response to yellow decline phytoplasma from group 16SrXIV, using RNA-Seq technique. Transcriptomics-based analysis reported here identified genes involved in coconut innate immunity. The number of down-regulated genes in response to phytoplasma infection exceeded the number of genes up-regulated. Of the 39,873 differentially expressed unigenes, 21,860 unigenes were suppressed and 18,013 were induced following infection. Comparative analysis revealed that genes associated with defence signalling against biotic stimuli were significantly overexpressed in phytoplasma-infected leaves versus healthy coconut leaves. Genes involving cell rescue and defence, cellular transport, oxidative stress, hormone stimulus and metabolism, photosynthesis reduction, transcription and biosynthesis of secondary metabolites were differentially represented. Our transcriptome analysis unveiled a core set of genes associated with defence of coconut in response to phytoplasma attack, although several novel defence response candidate genes with unknown function have also been identified. This study constitutes valuable sequence resource for uncovering the resistance genes and/or susceptibility genes which can be used as genetic tools in disease resistance breeding.
    Matched MeSH terms: Immunity, Innate
  12. Cattani JA, Gibson FD, Alpers MP, Crane GG
    Trans R Soc Trop Med Hyg, 1987;81(5):705-9.
    PMID: 3329776
    Ovalocytosis, an hereditary condition in which most erythrocytes are oval in shape, is a polymorphism that occurs in up to 20% or more of the population in Papua New Guinea and Malaysia. Due to the geographical correlation of the trait with endemic malaria, the possibility of a selective advantage in resistance to malaria has been raised. In a study of 202 individuals with greater than or equal to 50% oval red cells matched by age, sex and village of residence with controls having less than or equal to 30% oval cells, ovalocytic subjects had blood films negative for Plasmodium vivax (P = 0.009), for P. falciparum (P = 0.044), and for all species of malaria parasites (P = 0.013), more often than controls. Among individuals parasitaemic at any time there were no clear differences in density of parasitaemia. However, in children 2 to 4 years old, parasite densities of both species were lower in ovalocytic subjects than in controls (0.01 less than P less than 0.025). The differential susceptibility to malaria infection suggested by this study has implications for the evaluation of interventions, including possible future vaccine field trials, in populations where high-frequency ovalocytosis is present.
    Matched MeSH terms: Immunity, Innate
  13. Irving AT, Rozario P, Kong PS, Luko K, Gorman JJ, Hastie ML, et al.
    Cell Mol Life Sci, 2020 Apr;77(8):1607-1622.
    PMID: 31352533 DOI: 10.1007/s00018-019-03242-x
    Natural reservoir hosts can sustain infection of pathogens without succumbing to overt disease. Multiple bat species host a plethora of viruses, pathogenic to other mammals, without clinical symptoms. Here, we detail infection of bat primary cells, immune cells, and cell lines with Dengue virus. While antibodies and viral RNA were previously detected in wild bats, their ability to sustain infection is not conclusive. Old-world fruitbat cells can be infected, producing high titres of virus with limited cellular responses. In addition, there is minimal interferon (IFN) response in cells infected with MOIs leading to dengue production. The ability to support in vitro replication/production raises the possibility of bats as a transient host in the life cycle of dengue or similar flaviviruses. New antibody serology evidence from Asia/Pacific highlights the previous exposure and raises awareness that bats may be involved in flavivirus dynamics and infection of other hosts.
    Matched MeSH terms: Immunity, Innate
  14. El-Deeb NM, El-Adawi HI, El-Wahab AEA, Haddad AM, El Enshasy HA, He YW, et al.
    Front Cell Dev Biol, 2019;7:165.
    PMID: 31457012 DOI: 10.3389/fcell.2019.00165
    Medicinal mushrooms have been used for centuries against cancer and infectious diseases. These positive biological effects of mushrooms are due in part to the indirect action of stimulating immune cells. The objective of the current study is to investigate the possible immunomodulatory effects of mushroom polysaccharides on NK cells against different cancer cells. In this current study, fruiting bodies isolated from cultured Pleurotus ostreatus were extracted and partially purified using DEAE ion-exchange chromatography. The activation action of the collected fractions on Natural Killer cells was quantified against three different cancer cell lines in the presence or absence of human recombinant IL2 using three different activation and co-culture conditions. The possible modes of action of mushroom polysaccharides against cancer cells were evaluated at the cellular and molecular levels. Our results indicate that P. ostreatus polysaccharides induced NK-cells cytotoxic effects against lung and breast cancer cells with the largest effect being against breast cancer cells (81.2%). NK cells activation for cytokine secretion was associated with upregulation of KIR2DL genes while the cytotoxic activation effect of NK cells against cancer cells correlated with NKG2D upregulation and induction of IFNγ and NO production. These cytotoxic effects were enhanced in the presence of IL2. Analysis of the most active partially purified fraction indicates that it is predominantly composed of glucans. These results indicate bioactive 6-linked glucans present in P. ostreatus extracts activate NK-cell cytotoxicity via regulation of activation and induction of IFNγ and NO. These studies establish a positive role for bioactive P. ostreatus polysaccharides in NK-cells activation and induction of an innate immune response against breast and lung cancer cells.
    Matched MeSH terms: Immunity, Innate
  15. Vellasamy KM, Mariappan V, Shankar EM, Vadivelu J
    PLoS Negl Trop Dis, 2016 07;10(7):e0004730.
    PMID: 27367858 DOI: 10.1371/journal.pntd.0004730
    BACKGROUND: Burkholderia pseudomallei, the causative agent of melioidosis poses a serious threat to humankind. B. pseudomallei secretes numerous virulence proteins that alter host cell functions to escape from intracellular immune sensors. However, the events underlying disease pathogenesis are poorly understood.

    METHODS: We determined the ability of B. pseudomallei to invade and survive intracellularly in A549 human lung epithelial cells, and also investigated the early transcriptional responses using an Illumina HumanHT-12 v4 microarray platform, after three hours of exposure to live B. pseudomallei (BCMS) and its secreted proteins (CCMS).

    RESULTS: We found that the ability of B. pseudomallei to invade and survive intracellularly correlated with increase of multiplicity of infection and duration of contact. Activation of host carbohydrate metabolism and apoptosis as well as suppression of amino acid metabolism and innate immune responses both by live bacteria and its secreted proteins were evident. These early events might be linked to initial activation of host genes directed towards bacterial dissemination from lungs to target organs (via proposed in vivo mechanisms) or to escape potential sensing by macrophages.

    CONCLUSION: Understanding the early responses of A549 cells toward B. pseudomallei infection provide preliminary insights into the likely pathogenesis mechanisms underlying melioidosis, and could contribute to development of novel intervention strategies to combat B. pseudomallei infections.

    Matched MeSH terms: Immunity, Innate
  16. Chin VK, Basir R, Nordin SA, Abdullah M, Sekawi Z
    Int Microbiol, 2020 May;23(2):127-136.
    PMID: 30875033 DOI: 10.1007/s10123-019-00067-3
    Human leptospirosis is considered as one of the most widespread and potentially fatal zoonotic diseases that causes high mortality and morbidity in the endemic regions of tropical and subtropical countries. The infection can arise from direct or indirect exposure of human through contaminated environment that contains leptospires or animal reservoirs that carry leptospires. The clinical manifestations during human leptospirosis ranges from asymptomatic, mild infections to severe and life-threatening complications involving multi-organ failures with kidneys, lungs and liver severely affected. Despite much efforts have been put in to unravel the pathogenesis during human leptospirosis, it remains obscure to which extent the host factors or the pathogen itself contribute towards the pathogenesis. Host innate immunity, especially, polymorphonuclear neutrophils and complement system are involved in the first line of defense during human leptospirosis. However, pathogenic Leptospira has acquired diverse evasion strategies to evade from host immunity and establish infection in infected hosts. Hence, in this review, we focus on organs pathology during human leptospiral infection and host evasion strategies employed by Leptospira. A profound understanding on leptospiral immunity and how Leptospira subvert the immune system may provide new insights on the development of therapeutic regimens against this species in future.
    Matched MeSH terms: Immunity, Innate
  17. AL-Battawi, S., Hameed, S., Ng, E.S.C., Amini, F.
    JUMMEC, 2018;21(2):45-52.
    MyJurnal
    Graft-versus-host Disease (GVHD) is the main cause of morbidity and mortality after allogeneic hematopoietic
    stem cell transplantation (alloHSCT). In spite of immune-suppressive prophylaxis, most survivors suffer from
    acute and chronic GVHD (aGVHD and cGVHD). The outcome of alloHSCT may be affected by the presence of
    single nucleotide polymorphism (SNP) in non-HLA genes including those involved in innate immune responses.
    This study aimed to evaluate the impact of cytotoxic T-lymphocyte antigen-4 (CTLA-4) and caspase recruitment
    domain 15 (NOD2/CARD15) gene polymorphisms on the incidence and severity of aGVHD and cGVHD following
    alloHSCT. A structured literature review was carried out using various keywords and MESH terms such as
    stem cell transplantation, allogenic haematopoietic stem cell transplantation, GVHD, and non-HLA gene
    polymorphism, in PubMed, Google Scholar and Cochrane Database. A total of 8 studies that met inclusion
    criteria (English publications from 2006 to 2017) were included. Ten SNPs in CTLA-4 gene and three SNPs in
    NOD2/CARD15 gene were tested in patients with underlying haematological malignancies. Four studies tested
    the SNPs of CTLA-4 gene and two were found to have an association with CTLA-4 SNPs (rs3087243, rs231775)
    and increased incidence of aGVHD. The other four studies tested the SNPs of NOD2/CARD15 gene and one
    found an association between SNP13 and increased incidence of aGVHD. None of these eight studies found
    any effect on severity of GVHD. In conclusion, two SNPs in CTLA-4 and one SNP in NOD2/CARD15 increased
    the incidence of aGVHD but not its severity. The higher incidence of aGVHD in studies with larger sample size
    could support the impact of SNPs in the outcome of alloHSCT. However, due to the heterogeneity of studies in
    regard to the age of patients and donor, and conditioning regimen, it is difficult to draw a definite conclusion.
    Matched MeSH terms: Immunity, Innate
  18. Lee LJ, Komarasamy TV, Adnan NAA, James W, Rmt Balasubramaniam V
    Front Immunol, 2021;12:750365.
    PMID: 34745123 DOI: 10.3389/fimmu.2021.750365
    Zika virus (ZIKV) received worldwide attention over the past decade when outbreaks of the disease were found to be associated with severe neurological syndromes and congenital abnormalities. Unlike most other flaviviruses, ZIKV can spread through sexual and transplacental transmission, adding to the complexity of Zika pathogenesis and clinical outcomes. In addition, the spread of ZIKV in flavivirus-endemic regions, and the high degree of structural and sequence homology between Zika and its close cousin Dengue have raised questions on the interplay between ZIKV and the pre-existing immunity to other flaviviruses and the potential immunopathogenesis. The Zika epidemic peaked in 2016 and has affected over 80 countries worldwide. The re-emergence of large-scale outbreaks in the future is certainly a possibility. To date, there has been no approved antiviral or vaccine against the ZIKV. Therefore, continuing Zika research and developing an effective antiviral and vaccine is essential to prepare the world for a future Zika epidemic. For this purpose, an in-depth understanding of ZIKV interaction with many different pathways in the human host and how it exploits the host immune response is required. For successful infection, the virus has developed elaborate mechanisms to escape the host response, including blocking host interferon response and shutdown of certain host cell translation. This review provides a summary on the key host factors that facilitate ZIKV entry and replication and the mechanisms by which ZIKV antagonizes antiviral innate immune response and involvement of adaptive immune response leading to immunopathology. We also discuss how ZIKV modulates the host immune response during sexual transmission and pregnancy to induce infection, how the cross-reactive immunity from other flaviviruses impacts ZIKV infection, and provide an update on the current status of ZIKV vaccine development.
    Matched MeSH terms: Immunity, Innate
  19. Ziganshin RH, Ivanova OM, Lomakin YA, Belogurov AA, Kovalchuk SI, Azarkin IV, et al.
    Mol Cell Proteomics, 2016 Jul;15(7):2366-78.
    PMID: 27143409 DOI: 10.1074/mcp.M115.056036
    Acute inflammatory demyelinating polyneuropathy (AIDP) - the main form of Guillain-Barre syndrome-is a rare and severe disorder of the peripheral nervous system with an unknown etiology. One of the hallmarks of the AIDP pathogenesis is a significantly elevated cerebrospinal fluid (CSF) protein level. In this paper CSF peptidome and proteome in AIDP were analyzed and compared with multiple sclerosis and control patients. A total protein concentration increase was shown to be because of even changes in all proteins rather than some specific response, supporting the hypothesis of protein leakage from blood through the blood-nerve barrier. The elevated CSF protein level in AIDP was complemented by activization of protein degradation and much higher peptidome diversity. Because of the studies of the acute motor axonal form, Guillain-Barre syndrome as a whole is thought to be associated with autoimmune response against neurospecific molecules. Thus, in AIDP, autoantibodies against cell adhesion proteins localized at Ranvier's nodes were suggested as possible targets in AIDP. Indeed, AIDP CSF peptidome analysis revealed cell adhesion proteins degradation, however no reliable dependence on the corresponding autoantibodies levels was found. Proteome analysis revealed overrepresentation of Gene Ontology groups related to responses to bacteria and virus infections, which were earlier suggested as possible AIDP triggers. Immunoglobulin blood serum analysis against most common neuronal viruses did not reveal any specific pathogen; however, AIDP patients were more immunopositive in average and often had polyinfections. Cytokine analysis of both AIDP CSF and blood did not show a systemic adaptive immune response or general inflammation, whereas innate immunity cytokines were up-regulated. To supplement the widely-accepted though still unproven autoimmunity-based AIDP mechanism we propose a hypothesis of the primary peripheral nervous system damaging initiated as an innate immunity-associated local inflammation following neurotropic viruses egress, whereas the autoantibody production might be an optional complementary secondary process.
    Matched MeSH terms: Immunity, Innate
  20. Wei L, Syed Mortadza SA, Yan J, Zhang L, Wang L, Yin Y, et al.
    Neurosci Biobehav Rev, 2018 Apr;87:192-205.
    PMID: 29453990 DOI: 10.1016/j.neubiorev.2018.02.005
    Mood disorders are a group of psychiatric conditions that represent leading global disease burdens. Increasing evidence from clinical and preclinical studies supports that innate immune system dysfunction plays an important part in the pathophysiology of mood disorders. P2X7 receptor, belonging to the ligand-gated ion channel P2X subfamily of purinergic P2 receptors for extracellular ATP, is highly expressed in immune cells including microglia in the central nervous system (CNS) and has a vital role in mediating innate immune response. The P2X7 receptor is also important in neuron-glia signalling in the CNS. The gene encoding human P2X7 receptor is located in a locus of susceptibility to mood disorders. In this review, we will discuss the recent progress in understanding the role of the P2X7 receptor in the pathogenesis and development of mood disorders and in discovering CNS-penetrable P2X7 antagonists for potential uses in in vivo imaging to monitor brain inflammation and antidepressant therapeutics.
    Matched MeSH terms: Immunity, Innate
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links