Displaying publications 61 - 80 of 131 in total

Abstract:
Sort:
  1. Abbasi MA, Rehman AU, Siddiqui SZ, Sheeza A, Nazir S, Ahmad I, et al.
    Turk J Pharm Sci, 2017 Apr;14(1):49-55.
    PMID: 32454594 DOI: 10.4274/tjps.84756
    Objectives: The present research work was aimed to synthesize some new sulfonamides bearing 1,4-benzodioxin ring, which might have suitable antibacterial potential and can be used as possible therapeutic agents for inflammatory ailments.

    Materials and Methods: The synthesis was accomplished by the reaction of 2,3-dihydro-1,4-benzodioxin-6-amine (1) with 4-methylbenzenesulfonyl chloride (2) using 10% aqueous Na2CO3 to afford N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamide (3). Further the parent molecule 3 was reacted with different alkyl/aralkyl halides (4a-e) to achieve N-(alkyl/aralkyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamides (5a-e), using polar aprotic solvent; N,N-dimethylformamide (DMF) and catalytic amount of lithium hydride as base. The characterization of synthesized compounds was conducted by contemporary spectral techniques e.g., IR, 1H-NMR and EI-MS. Then these molecules were subjected to screening against various bacterial strains and their inhibitory potential against Lipoxygenase was also ascertained.

    Results: The screening results against various Gram-positive and Gram-negative bacterial strains revealed that N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamide (3), N-(2-bromoethyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamide (5a) and N-(2-phenethyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamide (5b) showed good inhibitory activity as compared to standard Ciprofloxacin. Moreover, N-(3-phenylpropyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfonamide (5c) and N-(4-chlorobenzyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-methylbenzenesulfon-amide (5e) displayed decent inhibition against lipoxygenase enzyme relative to standard Baicalein.

    Conclusion: On the basis of results obtained it can be concluded that the synthesized sulfonamides may provide an overall indispensable basis to introduce new drug candidates for the cure of inflammatory and other associated diseases.

  2. Mah SK, Ker PJ, Ahmad I, Zainul Abidin NF, Ali Gamel MM
    Materials (Basel), 2021 Sep 30;14(19).
    PMID: 34640118 DOI: 10.3390/ma14195721
    At the 90-nm node, the rate of transistor miniaturization slows down due to challenges in overcoming the increased leakage current (Ioff). The invention of high-k/metal gate technology at the 45-nm technology node was an enormous step forward in extending Moore's Law. The need to satisfy performance requirements and to overcome the limitations of planar bulk transistor to scales below 22 nm led to the development of fully depleted silicon-on-insulator (FDSOI) and fin field-effect transistor (FinFET) technologies. The 28-nm wafer planar process is the most cost-effective, and scaling towards the sub-10 nm technology node involves the complex integration of new materials (Ge, III-V, graphene) and new device architectures. To date, planar transistors still command >50% of the transistor market and applications. This work aims to downscale a planar PMOS to a 14-nm gate length using La2O3 as the high-k dielectric material. The device was virtually fabricated and electrically characterized using SILVACO. Taguchi L9 and L27 were employed to study the process parameters' variability and interaction effects to optimize the process parameters to achieve the required output. The results obtained from simulation using the SILVACO tool show good agreement with the nominal values of PMOS threshold voltage (Vth) of -0.289 V ± 12.7% and Ioff of less than 10-7 A/µm, as projected by the International Technology Roadmap for Semiconductors (ITRS). Careful control of SiO2 formation at the Si interface and rapid annealing processing are required to achieve La2O3 thermal stability at the target equivalent oxide thickness (EOT). The effects of process variations on Vth, Ion and Ioff were investigated. The improved voltage scaling resulting from the lower Vth value is associated with the increased Ioff due to the improved drain-induced barrier lowering as the gate length decreases. The performance of the 14-nm planar bulk PMOS is comparable to the performance of the FDSOI and FinFET technologies at the same gate length. The comparisons made with ITRS, the International Roadmap for Devices and Systems (IRDS), and the simulated and experimental data show good agreement and thus prove the validity of the developed model for PMOSs. Based on the results demonstrated, planar PMOSs could be a feasible alternative to FDSOI and FinFET in balancing the trade-off between performance and cost in the 14-nm process.
  3. Rahman H, Ali H, Din RU, Ahmad I, Sarker MR, Ali SHM
    Molecules, 2021 Oct 27;26(21).
    PMID: 34770905 DOI: 10.3390/molecules26216497
    Surface plasmon (SP)-induced spectral hole burning (SHB) at the silver-dielectric interface is investigated theoretically. We notice a typical lamb dip at a selective frequency, which abruptly reduces the absorption spectrum of the surface plasmons polaritons (SPP). Introducing the spontaneous generated coherence (SGC) in the atomic medium, the slope of dispersion becomes normal. Additionally, slow SPP propagation is also noticed at the interface. The spectral hole burning dip is enhanced with the SGC effect and can be modified and controlled with the frequency and intensity of the driving fields. The SPP propagation length at the hole-burning region is greatly enhanced under the effect of SGC. A propagation length of the order of 600 µm is achieved for the modes, which is a remarkable result. The enhancement of plasmon hole burning under SGC will find significant applications in sensing technology, optical communication, optical tweezers and nano-photonics.
  4. Yaacob NA, Abdullah SK, Ahmad I, Yahya NA, Draman N, Ismail SB, et al.
    Malays Fam Physician, 2015;10(3):2-10.
    PMID: 27570602 MyJurnal
    Introduction: In Malaysia, the prevalence of menstrual disorders among adolescents and young adults is high. However, most of them are not aware of the signs and symptoms of menstrual
    disorders in terms of medical issue as well as Islamic ruling. Awareness of the menstrual disorder
    symptoms is important so that early and appropriate treatment can be given.

    Objectives: The objective of the study was to compare the knowledge and attitude of premarital
    men and women on menstrual disorders.

    Methods: This was a comparative cross sectional study conducted in Kota Bharu, Kelantan. Self-administered
    questionnaires were given for data collection. The questionnaires consisted of 3 parts
    that required information on the women’s and men’s socio-demographic data, women’s menstrual
    history and information in knowledge and attitude of men and women on menstrual disorders.

    Results: A total of 460 respondents were involved in this study with a response rate of 93.5%. The
    prevalence of good knowledge was higher among women compared to men with 73.2% and 26.8%,
    respectively. There was a significant difference on knowledge and attitude on menstrual disorders
    between premarital men and women.

    Conclusion: Both premarital men and women had low knowledge on menstrual disorder with men
    knowing less than the women.
  5. Che Noh I, Avoi R, Abdullah Nurul A, Ahmad I, Abu Bakar R
    PeerJ, 2022;10:e13330.
    PMID: 35469194 DOI: 10.7717/peerj.13330
    BACKGROUND: Chronic hepatitis C virus (HCV) infection is one of the major causes of liver cirrhosis and liver carcinoma. Studies have indicated that an imbalance of cytokine activities could contribute to the pathogenesis of chronic HCV infection. This study aimed to investigate serum levels and gene expression of cytokines (IL-6, TNF-α and TGF-β1) in chronic HCV infection among Malay male subjects.

    METHODS: Thirty-nine subjects were enrolled from various health clinics in Kelantan, Malaysia, and divided into two groups: patients with chronic HCV infection (HP) and healthy control (HS). The serum cytokines IL-6, TNF-a-were measured using Luminex assay, and serum TGF-β1 was measured by ELISA. The mRNA gene expression for IL-6, TNF-α and TGF-β1 was measured by real-time reverse transcriptase polymerase chain reaction (RT-PCR).

    RESULTS: There were statistically significant differences in the mean serum levels of IL-6, and TGF-β1 in HP compared to HS group (p = 0.0180 and p = 0.0005, respectively). There was no significant difference in the mean serum level of TNF-α in HP compared to HS group. The gene expression for the studied cytokines showed no significant differences in HP compared to HS group.

    CONCLUSION: Serum IL-6 was significantly associated with chronic HCV infection.

  6. Ahmad I, Cheema TN, Raja MAZ, Awan SE, Alias NB, Iqbal S, et al.
    Sci Rep, 2021 Feb 24;11(1):4452.
    PMID: 33627741 DOI: 10.1038/s41598-021-83990-8
    The objective of the current investigation is to examine the influence of variable viscosity and transverse magnetic field on mixed convection fluid model through stretching sheet based on copper and silver nanoparticles by exploiting the strength of numerical computing via Lobatto IIIA solver. The nonlinear partial differential equations are changed into ordinary differential equations by means of similarity transformations procedure. A renewed finite difference based Lobatto IIIA method is incorporated to solve the fluidic system numerically. Vogel's model is considered to observe the influence of variable viscosity and applied oblique magnetic field with mixed convection along with temperature dependent viscosity. Graphical and numerical illustrations are presented to visualize the behavior of different sundry parameters of interest on velocity and temperature. Outcomes reflect that volumetric fraction of nanoparticles causes to increase the thermal conductivity of the fluid and the temperature enhances due to blade type copper nanoparticles. The convergence analysis on the accuracy to solve the problem is investigated viably though the residual errors with different tolerances to prove the worth of the solver. The temperature of the fluid accelerates due the blade type nanoparticles of copper and skin friction coefficient is reduced due to enhancement of Grashof Number.
  7. Abdelnasir S, Mungroo MR, Chew J, Siddiqui R, Khan NA, Ahmad I, et al.
    ACS Omega, 2023 Mar 07;8(9):8237-8247.
    PMID: 36910978 DOI: 10.1021/acsomega.2c06050
    Primary amoebic meningoencephalitis and granulomatous amoebic encephalitis are distressing infections of the central nervous system caused by brain-eating amoebae, namely, Naegleria fowleri and Acanthamoeba spp., respectively, and present mortality rates of over 90%. No single drug has been approved for use against these infections, and current therapy is met with an array of obstacles including high toxicity and limited specificity. Thus, the development of alternative effective chemotherapeutic agents for the management of infections due to brain-eating amoebae is a crucial requirement to avert future mortalities. In this paper, we synthesized a conducting polymer-based nanocomposite entailing polyaniline (PANI) and molybdenum disulfide (MoS2) and explored its anti-trophozoite and anti-cyst potentials against Acanthamoeba castellanii and Naegleria fowleri. The intracellular generation of reactive oxygen species (ROS) and ultrastructural appearances of amoeba were also evaluated with treatment. Throughout, treatment with the 1:2 and 1:5 ratios of PANI/MoS2 at 100 μg/mL demonstrated significant anti-amoebic effects toward A. castellanii as well as N. fowleri, appraised to be ROS mediated and effectuate physical alterations to amoeba morphology. Further, cytocompatibility toward human keratinocyte skin cells (HaCaT) and primary human corneal epithelial cells (pHCEC) was noted. For the first time, polymer-based nanocomposites such as PANI/MoS2 are reported in this study as appealing options in the drug discovery for brain-eating amoebae infections.
  8. Salleh A, Mustafa N, Teow YH, Fatimah MN, Khairudin FA, Ahmad I, et al.
    Biomedicines, 2022 Mar 31;10(4).
    PMID: 35453566 DOI: 10.3390/biomedicines10040816
    Tissue engineering products have grown rapidly as an alternative solution available for chronic wound and burn treatment. However, some drawbacks include additional procedures and a lack of antibacterial properties that can impair wound healing, which are issues that need to be tackled effectively for better wound recovery. This study aimed to develop a functionalized dual-layered hybrid biomatrix composed of collagen sponge (bottom layer) to facilitate cell proliferation and adhesion and gelatin/cellulose hydrogel (outer layer) incorporated with graphene oxide and silver nanoparticles (GC-GO/AgNP) to prevent possible external infections post-implantation. The bilayer hybrid scaffold was crosslinked with 0.1% (w/v) genipin for 6 h followed by advanced freeze-drying technology. Various characterisation parameters were employed to investigate the microstructure, biodegradability, surface wettability, nanoparticles antibacterial activity, mechanical strength, and biocompatibility of the bilayer bioscaffold towards human skin cells. The bilayer bioscaffold exhibited favourable results for wound healing applications as it demonstrated good water uptake (1702.12 ± 161.11%), slow rate of biodegradation (0.13 ± 0.12 mg/h), and reasonable water vapour transmission rate (800.00 ± 65.85 gm−2 h−1) due to its porosity (84.83 ± 4.48%). The biomatrix was also found to possess hydrophobic properties (48.97 ± 3.68°), ideal for cell attachment and high mechanical strength. Moreover, the hybrid GO-AgNP promoted antibacterial properties via the disk diffusion method. Finally, biomatrix unravelled good cellular compatibility with human dermal fibroblasts (>90%). Therefore, the fabricated bilayer scaffold could be a potential candidate for skin wound healing application.
  9. Ayipo YO, Ahmad I, Najib YS, Sheu SK, Patel H, Mordi MN
    J Biomol Struct Dyn, 2023 Mar;41(5):1959-1977.
    PMID: 35037841 DOI: 10.1080/07391102.2022.2026818
    The nsp3 macrodomain and nsp12 (RdRp) enzymes are strongly implicated in the virulent regulation of the host immune response and viral replication of SARS-CoV-2, making them plausible therapeutic targets for mitigating infectivity. Remdesivir remains the only FDA-approved small-molecule inhibitor of the nsp12 in clinical conditions while none has been approved yet for the nsp3 macrodomain. In this study, 69,067 natural compounds from the IBScreen database were screened for efficacious potentials with mechanistic multitarget-directed inhibitory pharmacology against the dual targets using in silico approaches. Standard and extra precision (SP and XP) Maestro glide docking analyses were employed to evaluate their inhibitory interactions against the enzymes. Four compounds, STOCK1N-45901, 03804, 83408, 08377 consistently showed high XP scores against the respective targets and interacted strongly with pharmacologically essential amino acid and RNA residues, in better terms than the standard, co-crystallized inhibitors, GS-441524 and remdesivir. Further assessments through the predictions of ADMET and mutagenicity distinguished STOCK1N-45901, a natural derivative of o-hydroxybenzoate as the most promising candidate. The ligand maintained a good conformational and thermodynamic stability in complex with the enzymes throughout the trajectories of 100 ns molecular dynamics, indicated by RMSD, RMSF and radius of gyration plots. Its binding free energy, MM-GBSA was recorded as -54.24 and -31.77 kcal/mol against the respective enzyme, while its structure-activity relationships confer high probabilities as active antiviral, anti-inflammatory, antiinfection, antitussive and peroxidase inhibitor. The IBScreen database natural product, STOCK1N-45901 (2,3,4,5,6-pentahydroxyhexyl o-hydroxybenzoate) is thus recommended as a potent inhibitor of dual nsp3 and nsp12 of SARS-CoV-2 for further study. Communicated by Ramaswamy H. Sarma.
  10. Arsad AZ, Zuhdi AWM, Abdullah SF, Chau CF, Ghazali A, Ahmad I, et al.
    Molecules, 2023 Mar 20;28(6).
    PMID: 36985752 DOI: 10.3390/molecules28062780
    Zinc sulfide (ZnS) thin films prepared using the chemical bath deposition (CBD) method have demonstrated great viability in various uses, encompassing photonics, field emission devices, field emitters, sensors, electroluminescence devices, optoelectronic devices, and are crucial as buffer layers of solar cells. These semiconducting thin films for industrial and research applications are popular among researchers. CBD appears attractive due to its simplicity, cost-effectiveness, low energy consumption, low-temperature compatibility, and superior uniformity for large-area deposition. However, numerous parameters influence the CBD mechanism and the quality of the thin films. This study offers a comprehensive review of the impact of various parameters that can affect different properties of ZnS films grown on CBD. This paper provides an extensive review of the film growth and structural and optical properties of ZnS thin films influenced by various parameters, which include complexing agents, the concentration ratio of the reactants, stirring speed, humidity, deposition temperature, deposition time, pH value, precursor types, and annealing temperature environments. Various studies screened the key influences on the CBD parameters concerning the quality of the resulting films. This work will motivate researchers to provide additional insight into the preparation of ZnS thin films using CBD to optimize this deposition method to its fullest potential.
  11. Saeed K, Khalil W, Al-Shamayleh AS, Ahmad I, Akhunzada A, ALharethi SZ, et al.
    Sensors (Basel), 2023 Mar 11;23(6).
    PMID: 36991755 DOI: 10.3390/s23063044
    The exponentially growing concern of cyber-attacks on extremely dense underwater sensor networks (UWSNs) and the evolution of UWSNs digital threat landscape has brought novel research challenges and issues. Primarily, varied protocol evaluation under advanced persistent threats is now becoming indispensable yet very challenging. This research implements an active attack in the Adaptive Mobility of Courier Nodes in Threshold-optimized Depth-based Routing (AMCTD) protocol. A variety of attacker nodes were employed in diverse scenarios to thoroughly assess the performance of AMCTD protocol. The protocol was exhaustively evaluated both with and without active attacks with benchmark evaluation metrics such as end-to-end delay, throughput, transmission loss, number of active nodes and energy tax. The preliminary research findings show that active attack drastically lowers the AMCTD protocol's performance (i.e., active attack reduces the number of active nodes by up to 10%, reduces throughput by up to 6%, increases transmission loss by 7%, raises energy tax by 25%, and increases end-to-end delay by 20%).
  12. Ayipo YO, Ahmad I, Alananzeh W, Lawal A, Patel H, Mordi MN
    J Biomol Struct Dyn, 2023 Nov;41(19):10096-10116.
    PMID: 36476097 DOI: 10.1080/07391102.2022.2153168
    Antibiotic resistance (AR) remains one of the leading global health challenges, mostly implicated in disease-related deaths. The Enterobacteriaceae-producing metallo-β-lactamases (MBLs) are critically involved in AR pathogenesis through Zn-dependent catalytic destruction of β-lactam antibiotics, yet with limited successful clinical inhibitors. The efficacy of relevant broad-spectrum β-lactams including imipenem and meropenem are seriously challenged by their susceptibility to the Zn-dependent carbapenemase hydrolysis, as such, searching for alternatives remains imperative. In this study, computational molecular modelling and virtual screening methods were extensively applied to identify new putative Zn-sensitive broad-spectrum inhibitors of MBLs, specifically imipenemase-1 (IMP-1) from the IBScreen database. Three ligands, STOCK3S-30154, STOCK3S-30418 and STOCK3S-30514 selectively displayed stronger binding interactions with the enzymes compared to reference inhibitors, imipenem and meropenem. For instance, the ligands showed molecular docking scores of -9.450, -8.005 and -10.159 kcal/mol, and MM-GBSA values of -40.404, -31.902 and -33.680 kcal/mol respectively against the IMP-1. Whereas, imipenem and meropenem showed docking scores of -9.038 and -10.875 kcal/mol, and MM-GBSA of -31.184 and -32.330 kcal/mol respectively against the enzyme. The ligands demonstrated good thermodynamic stability and compactness in complexes with IMP-1 throughout the 100 ns molecular dynamics (MD) trajectories. Interestingly, their binding affinities and stabilities were significantly affected in contacts with the remodelled Zn-deficient IMP-1, indicating sensitivity to the carbapenemase active Zn site, however, with non-β-lactam scaffolds, tenable to resist catalytic hydrolysis. They displayed ideal drug-like ADMET properties, thus, representing putative Zn-sensitive non-β-lactam inhibitors of IMP-1 amenable for further experimental studies.
  13. Mathew B, Ravichandran V, Raghuraman S, Rangarajan TM, Abdelgawad MA, Ahmad I, et al.
    J Biomol Struct Dyn, 2023 Nov;41(19):9256-9266.
    PMID: 36411738 DOI: 10.1080/07391102.2022.2146198
    Candidates generated from unsaturated ketone (chalcone) demonstrated as strong, reversible and specific monoamine oxidase-B (MAO-B) inhibitory activity. For the research on MAO-B inhibition, our team has synthesized and evaluated a panel of aldoxime-chalcone ethers (ACE) and hydroxylchalcones (HC). The MAO-B inhibitory activity of several candidates is in the micro- to nanomolar range in these series. The purpose of this research was to develop predictive QSAR models and look into the relation between MAO-B inhibition by aldoxime and hydroxyl-functionalized chalcones. It was shown that the molecular descriptors ETA Shape P, MDEO-12, ETA dBetaP, SpMax1 Bhi and ETA EtaP B are significant in the inhibitory action of the MAO-B target. Using the current 2D QSAR models, potential chalcone-based MAO-B inhibitors might be created. The lead molecules were further analyzed by the detailed molecular dynamics study to establish the stability of the ligand-enzyme complex.Communicated by Ramaswamy H. Sarma.
  14. Qammar R, Abidin ZU, Sair SA, Ahmad I, Mansour AZ, Owidha HFAA
    Environ Sci Pollut Res Int, 2023 Sep;30(45):100743-100752.
    PMID: 37639102 DOI: 10.1007/s11356-023-28987-8
    The study is aimed at investigating the impact of waste management in the context of Industry 4.0 and sustainable development. Data were collected from 257 production managers in the industrial sector using a survey questionnaire and analyzed using SPSS and PLS-SEM. The findings indicated that Industry 4.0 and waste management significantly contribute to achieving sustainable development. The integration of Industry 4.0 technologies and effective waste management practices can help organizations implement sustainable development goals. Practical implications include assisting organizations in implementing Industry 4.0 technologies and waste management strategies based on the 3Rs principle. This can lead to reduced environmental impacts and improved resource efficiency, contributing to sustainable development. Policymakers can also benefit from the study's insights to address waste management challenges and promote sustainable development. The study's originality lies in its incorporation of the cyber-physical system and niche theory to explore how Industry 4.0 can facilitate sustainable waste management. It highlights the transformative potential of Industry 4.0 in the industrial sector, particularly in developing countries. Overall, this research offers a unique contribution to understanding waste management within the context of Industry 4.0 and sustainable development.
  15. Ayipo YO, Alananzeh WA, Ahmad I, Patel H, Mordi MN
    J Biomol Struct Dyn, 2023;41(13):6219-6235.
    PMID: 35881145 DOI: 10.1080/07391102.2022.2104376
    Serotonin (5-HT) antagonists and reuptake inhibitors (SARIs) are atypical antidepressants for managing major depressive disorder. They are oftentimes applied as adjuvants for ameliorating aftereffects of SSRI antidepressants including insomnia and sexual dysfunction. The few available candidates of this class including lorpiprazole and trazodone also display some daunting side effects, making a continuous search for improved alternatives essential. Natural β-carboline alkaloids (NβCs) are interestingly renowned with broad pharmacological spectrum against several neuropsychiatric disorders including depression. However, their potentials as SARIs remain underexplored. In this study, 982 NβCs retrieved from the Ambinter-Greenpharma (Amb) database were virtually screened for potent SARI alternatives using computational and biocheminformatics approaches: homology modelling of 5-HT1A receptor, Glide HTVS, SP and XP molecular docking, molecular dynamics (MD) simulation, ADMET and mutagenicity predictions. The homology receptor was validated as a good representative of human 5HT1A receptor using the RCSB structure validation and quality protocols. From the virtual screening against the 5-HT1A receptor, Amb ligands, Amb18709727 and Amb37857532 showed higher binding affinities by XP scores of -8.725 and -7.976 kcal/mol, and MMGBSA of -87.972 and -107.585 kcal/mol respectively compared to lorpiprazole, a reference SARI with XP score and MMGBSA of -6.512 and -62.788 kcal/mol respectively. They maintained ideal contacts with pharmacologically essential amino acid residues implicated in SARI mechanisms and expressed higher stability and compactness than lorpiprazole throughout the trajectories of 100 ns MD simulation. They also displayed interesting ADME, druggability, low toxicity and mutagenicity profiles, ideal for CNS drug prospects, thus, recommended as putative SARI candidates for further study.Communicated by Ramaswamy H. Sarma.
  16. Ahmad I, Raji YE, Hassan L, Samaila A, Aliyu B, Zinsstag J, et al.
    Heliyon, 2023 Jun;9(6):e17215.
    PMID: 37383186 DOI: 10.1016/j.heliyon.2023.e17215
    Animal tuberculosis (TB) is a contagious and chronic disease caused by mycobacteria belonging to theMycobacterium tuberculosis complex (MTBC) in domestic and wild animals. MTBC strains infection has been confirmed in many animal species in Nigeria, including captive wildlife, cattle, dromedary camels, goats, and pigs. Despite widespread infection and the potential impact of the disease on public health, active surveillance and control strategies are absent in Nigeria. This study aimed to conduct the first comprehensive meta-analysis to assess the distribution of tuberculosis and analyze the potential moderators of infection in animals in Nigeria. Eligible studies (sixty-one (Cadmus et al., 2014) [61] prevalence and seven (Menzies and Neill, 2000) [7] case reports) were retrieved and included in the analysis. The analyses showed an overall pooled TB prevalence of 7.0% (95% CI: 6.0-8.0) comprising of infection distributed in cattle (8.0%, 95% CI: 7.0-8.0), goats (0.47%, 95% CI: 0-1.2), sheep (0.27%, 95% CI: 0.14-0.46), camels (13.0%, 95% CI: 0-47), and wildlife (13.0%, 95% CI: 9-16) respectively. The occurrence of infection was significantly moderated by the publication periods, geographical location, sample size, and detection methods. TB prevalence was heterogeneous across several predictors, with the year of publication exhibiting a higher rate (46%) of the detected heterogeneity. These findings should provide policy-relevant information to guide the design and establishment of prevention and control measures amenable to the local situations in Nigeria.
  17. Ambarwati NSS, Elya B, Malik A, Omar H, Hanafi M, Ahmad I
    J Adv Pharm Technol Res, 2022;13(1):50-55.
    PMID: 35223441 DOI: 10.4103/japtr.japtr_132_21
    Isolation and determination of antibacterial compounds from plants are essential to obtain a new antibacterial as a substitute for conventional resistant antibiotics. This study aims to isolate and identify a new robustaflavone as antibacterial activity from Garcinia latissima Miq. leave. In this study, the isolation process was carried out using column chromatography followed by preparative thin layer chromatography (TLC) based on the TLC profile. The fraction D was tested for anti-bacterial Bacillus subtilis using the TLC bioautography method. The isolates obtained were then identified using 1H-NMR, 13C-NMR, distortionless enhancement by polarization transfer, heteronuclear single quantum coherence, and heteronuclear multiple bond coherence. The Activity assay of the isolate was performed using the microdilution method. A pure compound obtained the result of the separation process with eluent n-hexane: Ethyl acetate (3:2) with Rf 0.6. This spot follows the spot in the contact bioautographic result of fraction D, the spot with Rf 0.6 gives an inhibition zone. After identifying and purifying the isolate were known as Robustaflavone, this compound has activity against B. subtilis with a (minimum inhibitory concentration) value of 2500 ppm. Robustaflavone successfully isolated and identified from G. latissima leave and its antibacterial activity.
  18. Ayipo YO, Ahmad I, Chong CF, Zainurin NA, Najib SY, Patel H, et al.
    J Biomol Struct Dyn, 2024;42(2):993-1014.
    PMID: 37021485 DOI: 10.1080/07391102.2023.2198016
    The human serotonin transporters (hSERTs) are neurotransmitter sodium symporters of the aminergic G protein-coupled receptors, regulating the synaptic serotonin and neuropharmacological processes related to neuropsychiatric disorders, notably, depression. Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine and (S)-citalopram are competitive inhibitors of hSERTs and are commonly the first-line medications for major depressive disorder (MDD). However, treatment-resistance and unpleasant aftereffects constitute their clinical drawbacks. Interestingly, vilazodone emerged with polypharmacological (competitive and allosteric) inhibitions on hSERTs, amenable to improved efficacy. However, its application usually warrants adjuvant/combination therapy, another subject of critical adverse events. Thus, the discovery of alternatives with polypharmacological potentials (one-drug-multiple-target) and improved safety remains essential. In this study, carbazole analogues from chemical libraries were explored using docking and molecular dynamics (MD) simulation. Selectively, two IBScreen ligands, STOCK3S-30866 and STOCK1N-37454 predictively bound to the active pockets and expanded boundaries (extracellular vestibules) of the hSERTs more potently than vilazodone and (S)-citalopram. For instance, the two ligands showed docking scores of -9.52 and -9.59 kcal/mol and MM-GBSA scores of -92.96 and -65.66 kcal/mol respectively compared to vilazodone's respective scores of -7.828 and -59.27 against the central active site of the hSERT (PDB 7LWD). Similarly, the two ligands also docked to the allosteric pocket (PDB 5I73) with scores of -8.15 and -8.40 kcal/mol and MM-GBSA of -96.14 and -68.46 kcal/mol whereas (S)-citalopram has -6.90 and -69.39 kcal/mol respectively. The ligands also conferred conformational stability on the receptors during 100 ns MD simulations and displayed interesting ADMET profiles, representing promising hSERT modulators for MDD upon experimental validation.Communicated by Ramaswamy H. Sarma.
  19. Lim LS, Rosli NA, Ahmad I, Mat Lazim A, Mohd Amin MCI
    Nanomaterials (Basel), 2017 Nov 20;7(11).
    PMID: 29156613 DOI: 10.3390/nano7110399
    pH-sensitive poly(acrylic acid) (PAA) hydrogel reinforced with cellulose nanocrystals (CNC) was prepared. Acrylic acid (AA) was subjected to chemical cross-linking using the cross-linking agent MBA (N,N-methylenebisacrylamide) with CNC entrapped in the PAA matrix. The quantity of CNC was varied between 0, 5, 10, 15, 20, and 25 wt %. X-ray diffraction (XRD) data showed an increase in crystallinity with the addition of CNC, while rheology tests demonstrated a significant increase in the storage modulus of the hydrogel with an increase in CNC content. It was found that the hydrogel reached maximum swelling at pH 7. The potential of the resulting hydrogels to act as drug carriers was then evaluated by means of the drug encapsulation efficiency test using theophylline as a model drug. It was observed that 15% CNC/PAA hydrogel showed the potential to be used as drug carrier system.
  20. Ahmad W, Ur Rahman A, Ahmad I, Yaseen M, Mohamed Jan B, Stylianakis MM, et al.
    Nanomaterials (Basel), 2021 Jan 14;11(1).
    PMID: 33466855 DOI: 10.3390/nano11010203
    In this study, oxidative desulfurization (ODS) of modeled and real oil samples was investigated using manganese-dioxide-supported, magnetic-reduced graphene oxide nanocomposite (MnO2/MrGO) as a catalyst in the presence of an H2O2/HCOOH oxidation system. MnO2/MrGO composite was synthesized and characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analyses. The optimal conditions for maximum removal of dibenzothiophene (DBT) from modeled oil samples were found to be efficient at 40 °C temperature, 60 min reaction time, 0.08 g catalyst dose/10 mL, and 2 mL of H2O2/formic acid, under which MnO2/MrGO exhibited intense desulfurization activity of up to 80%. Under the same set of conditions, the removal of only 41% DBT was observed in the presence of graphene oxide (GO) as the catalyst, which clearly indicated the advantage of MrGO in the composite catalyst. Under optimized conditions, sulfur removal in real oil samples, including diesel oil, gasoline, and kerosene, was found to be 67.8%, 59.5%, and 51.9%, respectively. The present approach is credited to cost-effectiveness, environmental benignity, and ease of preparation, envisioning great prospects for desulfurization of fuel oils on a commercial level.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links