Aflatoxins are carcinogenic, mutagenic and teratogenic fungal toxins predominantly produced by Aspergillus flavus (A. flavus) and Aspergillus parasiticus (A. parasiticus). Members of the Aspergillus family are wound-invading pathogens that can infect pistachio trees and nuts. The pistachio nut is a favorite tree nut worldwide, and more than half of the world’s pistachio production is from Iran. Pistachio nuts can easily be infected with Aspergillus spp. due to early splitting or due to animal, insect or physical damage. Any established infection of Aspergillus under high relative humidity and temperature results in the production and rapid accumulation of aflatoxins in pistachio nuts. It is impractical to remove aflatoxins from pistachio nuts after they are produced. Some microorganisms (such as saprophytic yeasts) have been reported to have an antagonistic effect against Aspergillus spp. This study aimed to isolate saprophytic yeasts from pistachio fruits and leaves and investigate their biocontrol activities against a toxigenic strain of Aspergillus flavus (A. flavus). Saprophytic yeasts were identified based on their morphological properties and biochemical tests. In total, 24 yeast isolates were obtained from pistachio fruits and leaves, and their antagonistic effect on A. flavus (PTCC 5006) was investigated. Five saprophytic yeast isolates, displaying the highest biocontrol activities against A. flavus (PTCC 5006), were identified as Pseudozyma fusiformata, Cryptococcus albidus, Rhodotorula fragaria, Cryptococcus hungaricus and Rhodotorula hinula. The biocontrol activities of these yeast isolates were evaluated by their inhibitory effects on sporulation, colony expansion, biomass production and prevention of aflatoxin B1 (AFB1) production. Pseudozyma fusiformata was the most effective yeast isolate in terms of spore reduction (84.6%) and inhibition of AFB1 production (89.1%). Cryptococcus albidus produced the maximum reduction in fungal dry weight (77.9%). Based on these results, isolated saprophytic yeasts from pistachio fruits and leaves can be used as effective biocontrol agents against the growth of Aspergillus and aflatoxin production.
This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents.
The Sfp-type 4'-phosphopantetheinyl transferase Ppt1 is required for activation of nonribosomal peptide synthetases, including α-aminoadipate reductase (AAR) for lysine biosynthesis and polyketide synthases, enzymes that biosynthesize peptide and polyketide secondary metabolites, respectively. Deletion of the PPT1 gene, from the maize pathogen Cochliobolus heterostrophus and the rice pathogen Cochliobolus miyabeanus, yielded strains that were significantly reduced in virulence to their hosts. In addition, ppt1 mutants of C. heterostrophus race T and Cochliobolus victoriae were unable to biosynthesize the host-selective toxins (HST) T-toxin and victorin, respectively, as judged by bioassays. Interestingly, ppt1 mutants of C. miyabeanus were shown to produce tenfold higher levels of the sesterterpene-type non-HST ophiobolin A, as compared with the wild-type strain. The ppt1 strains of all species were also reduced in tolerance to oxidative stress and iron depletion; both phenotypes are associated with inability to produce extracellular siderophores biosynthesized by the nonribosomal peptide synthetase Nps6. Colony surfaces were hydrophilic, a trait previously associated with absence of C. heterostrophus Nps4. Mutants were decreased in asexual sporulation and C. heterostrophus strains were female-sterile in sexual crosses; the latter phenotype was observed previously with mutants lacking Nps2, which produces an intracellular siderophore. As expected, mutants were albino, since they cannot produce the polyketide melanin and were auxotrophic for lysine because they lack an AAR.
A review of 352 patients with primary liver cell carcinoma treated by the author is presented. The poor rate of resectability (7 per cent) has necessitated various forms of treatment over the years. These are described in detail. Based on this experience, the current form of treatment for nonresectable carcinoma is summarized. Although it is too early to assess this form of treatment, initial results appear to be promising. A second report in the near future is planned.