In civil engineering, many geotechnical and forensic projects employ polyurethane (PU) for ground improvement, and the results have shown to be effective in terms of time and cost savings. However, similar to many other chemical stabilisers, the use of PU for soil stabilisation may have environmental repercussions. Therefore, this paper utilised a toxicity characteristic leaching procedure (TCLP) to investigate the potential for ground contamination resulting from the application of PU for the stabilisation of marine clay. Furthermore, the hazardousness of PU during the stabilisation of marine clay was investigated by testing its reactivity, ignitability, corrosivity and physical properties. The results reveal that the quantity of heavy metals present in PU is far below the regulatory limits. The results further confirm that PU is odourless and non-corrosive and that it is non-cyanide and non-sulphide-bearing. However, PU is capable of igniting. Overall, the potential application of PU for ground improvement is promising due to its environmental friendliness.
The rapid development of the industrial sector has resulted in tremendous economic growth. However, this growth has also presented environmental challenges, specifically due to the substantial sewage generated and its contribution to the early warning of global water resource depletion. Large concentrations of poisonous heavy metals, including cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and nickel (Ni), are found in industrial effluent. Therefore, various studies are currently underway to provide effective solutions to alleviate heavy metal ion pollution in sewage. One emerging strategy for sewage pollution remediation is adsorption using wood and its derivatives. This approach is gaining popularity due to the porous structure, excellent mechanical properties, and easy chemical modification of wood. Recent studies have focused on removing heavy metal ions from sewage, summarising and analysing different technical principles, affecting factors, and mainstream chemical modification methods on wood. Furthermore, this work provides insight into potential future development direction for enhanced adsorption of heavy metal ions using wood and its derivatives in wastewater treatment. Overall, this review aims to raise awareness of environmental pollution caused by heavy metals in sewage and promote green environmental protection, low-carbon energy-saving, and sustainable solutions for sewage heavy metal treatment.
A detailed overview toward the advancement of amino acid-based electrochemical sensors on the detection of heavy metals is presented. Discussion is focused on the unique properties of various amino acids (AAs) and its composites which allow them being employed in a diverse range of sensing platforms. Formation of metal-ligand complexes in between metal ions and different AAs has been discussed. The essential insights on the interaction between amino acid-based sensors and target heavy metal ions (HMIs) are provided, along with the discussion on their pros and cons. Voltammetry analysis of metal ions based on various interfaces of electrochemical sensors has been highlighted, together with the incorporation of AAs with organic, inorganic and bio-materials. In all these cases, the amino acid modified electrodes have demonstrated large active surface area with abundant adsorption sites for HMIs. The developed sensors are promising for environmental applications, as evidenced by the high selectivity, high sensitivity, high catalytic activity, and low detection limits. The materials involved, fabrication techniques and its sensing mechanism were comprehensively discussed, and the future outlooks of electrochemical sensing platforms are emphasized in this review.
Phytoremediation is a biological remediation technique known for low-cost technology and environmentally friendly approach, which employs plants to extract, stabilise, and transform various compounds, such as potentially toxic elements (PTEs), in the soil or water. Recent developments in utilising chelating agents soil remediation have led to a renewed interest in chelate-induced phytoremediation. This review article summarises the roles of various chelating agents and the mechanisms of chelate-induced phytoremediation. This paper also discusses the recent findings on the impacts of chelating agents on PTEs uptake and plant growth and development in phytoremediation. It was found that the chelating agents have increased the rate of metal absorption and translocation up to 45% from roots to the aboveground plant parts during PTEs phytoremediation. Besides, it was also explored that the plants may experience some phytotoxicity after adding chelating agents to the soil. However, due to the leaching potential of synthetic chelating agents, the use of organic chelants have been explored to be used in PTEs phytoremediation. Finally, this paper also presents comprehensive insights on the significance of using chelating agents through SWOT analysis to discuss the advantages and limitations of chelate-induced phytoremediation.
The heavy metals namely Fe, As, Cu, Cd, and Pb were investigated in two marine fishes silver pomfret (Pampus argentus) and torpedo scad (Megalaspis cordyla), and three seafoods sibogae squid (Loligo sibogae), Indian white prawn (Fenneropenaeus indicus), and mud crab (Scylla serrata) by using inductively coupled plasma spectrophotometer (ICP-MS) from two renowned fish harvesting coastal area of Malaysia named as Kedah and Selangor. Among the target heavy metals, highest mean concentration of As and Fe were found in Scylla serrata (72.14±7.77 μg/g) in Kedah and Megalaspis cordyla (149.40±2.15 μg/g) in Selangor. Pearson's correlation results showed As-Fe-Cd-Cu originated from the same source. Maximum estimated daily intake (EDI) values of Scylla serrata were found 175.25 μg/g/day and 100.81 μg/g/day for child in both Kedah and Selangor areas respectively. Hazard quotient (HQ) and hazard index (HI) results revealed that local consumers of Kedah and Selangor will face high chronic risk if they consume Scylla serrata, Fenneropenaeus indicus, and Megalaspis cordyla on regular basis in their diet. Carcinogenic risk results suggested that all the studied species pose very high risk of cancer occurrences to the consumers in both areas. Therefore, it could be recommended that consumers should be aware when they are consuming these marine species since they can pose serious health risk associated with prolonged consumption.
The rapid consumption of metals and unorganized disposal have led to unprecedented increases in heavy metal ion concentrations in the ecosystem, which disrupts environmental homeostasis and results in agricultural biodiversity loss. Mitigation and remediation plans for heavy metal pollution are largely dependent on the discovery of cost-effective, biocompatible, specific, and robust detectors because conventional methods involve sophisticated electronics and sample preparation procedures. Carbon dots (CDs) have gained significant importance in sensing applications related to environmental sustainability. Fluorescence sensor applications have been enhanced by their distinctive spectral properties and the potential for developing efficient photonic devices. With the recent development of biomass-functionalized carbon dots, a wide spectrum of multivalent and bivalent transition metal ions responsible for water quality degradation can be detected with high efficiency and minimal toxicity. This review explores the various methods of manufacturing carbon dots and the biochemical mechanisms involved in metal detection using green carbon dots for sensing applications involving Cu (II), Fe (III), Hg (II), and Cr (VI) ions in aqueous systems. A detailed discussion of practical challenges and future recommendations is presented to identify feasible design routes.
Improper disposal of municipal solid waste led to the release of heavy metals into the environment through leachate accumulation, causing a range of health and environmental problems. Phycoremediation, using microalgae to remove heavy metals from contaminated water, was investigated as a promising alternative to traditional remediation methods. This study explored the potential of Scenedesmus sp. as a phycoremediation agent for heavy metal removal from landfill leachate. The study was conducted in batch, continuous, and membrane bioreactor (MBR). In the batch system, Scenedesmus sp. was added to the leachate and incubated for 15 days before the biomass was separated from the suspension. In the continuous system, Scenedesmus sp. was cultured in a flow-through system, and the leachate was continuously fed into the system with flow rates measured at 120, 150, and 180 mL/h for 27 days. The MBR system was similar to the continuous system, but it incorporated a membrane filtration step to remove suspended solids from the treated water. The peristaltic pump was calibrated to operate at five different flow rates: 0.24 L/h, 0.30 L/h, 0.36 L/h, 0.42 L/h, and 0.48 L/h for the MBR system and ran for 24 h. The results showed that Scenedesmus sp. was effective in removing heavy metals such as lead (Pb), cobalt (Co), chromium (Cr), nickel (Ni), and zinc (Zn) from landfill leachate in all three systems. The highest removal efficiency was observed for Ni, with a removal of 0.083 mg/L in the MBR and 0.068 mg/L in batch mode. The lowest removal efficiency was observed for Zn, with a removal of 0.032 mg/L in the MBR, 0.027 mg/L in continuous mode, and 0.022 mg/L in batch mode. The findings depicted that the adsorption capacity varied among the studied metal ions, with the highest capacity observed for Ni (II) and the lowest for Zn (II), reflecting differences in metal speciation, surface charge interactions, and affinity for the adsorbent material. These factors influenced the adsorption process and resulted in varying adsorption capacities for different metal ions. The study also evaluated the biomass growth of Scenedesmus sp. and found that it was significantly influenced by the initial metal concentration in the leachate. The results of this study suggest that Scenedesmus sp. can be used as an effective phycoremediation agent for removing heavy metals from landfill leachate.
This study examined the concentration of heavy metals in 13 fish species. The results indicated that shellfish species (clams) have the highest metal concentrations, followed by demersal and pelagic fishes. The mean concentration of metals in clams are Zn 88.74 ± 11.98 µg/g, Cu 4.96 ± 1.06 µg/g, Pb 1.22 ± 0.19 µg/g, Cd 0.34 ± 0.04 µg/g dry wt. basis, whereas the same measure in fish tissues was 58.04 ± 18.51, 2.47 ± 1.21, 0.58 ± 0.27 and 0.17 ± 0.08 µg/g dry wt. basis. The concentrations of heavy metals in clams and fish tissues were still lower than the maximum allowable concentrations as suggested by the Malaysian Food Act (1983) and are considered safe for local human consumption.
Crude extract of ChE from the liver of Puntius javanicus was purified using procainamide-sepharyl 6B. S-Butyrylthiocholine iodide (BTC) was selected as the specific synthetic substrate for this assay with the highest maximal velocity and lowest biomolecular constant at 53.49 µmole/min/mg and 0.23 mM, respectively, with catalytic efficiency ratio of 0.23. The optimum parameter was obtained at pH 7.5 and optimal temperature in the range of 25 to 30°C. The effect of different storage condition was assessed where ChE activity was significantly decreased after 9 days of storage at room temperature. However, ChE activity showed no significant difference when stored at 4.0, 0, and -25°C for 15 days. Screening of heavy metals shows that chromium, copper, and mercury strongly inhibited P. javanicus ChE by lowering the activity below 50%, while several pairwise combination of metal ions exhibited synergistic inhibiting effects on the enzyme which is greater than single exposure especially chromium, copper, and mercury. The results showed that P. javanicus ChE has the potential to be used as a biosensor for the detection of metal ions.
Exposure to toxic metals and excessive amount of trace elements is a risk factor of cognitive decline. Continuous monitoring of these elements by the use of metabolically inactive tissues such as fingernails may help in taking preventive measures to delay the cognitive decline process. In this study, the cognitive function of 54 elderlies (60-72 years old) from FELDA Sungai Tengi, Selangor, was evaluated using the Malay version of Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). The levels of arsenic (As), cadmium (Cd), copper (Cu), manganese (Mn), lead (Pb), and zinc (Zn) in fingernail were detected using Inductively Coupled Plasma-Mass Spectrometry. Results showed that (92.6 %) our population was cognitively impaired based on the MoCA with mean score of 18.07 ± 5.11. The mean level of elements in fingernails for As, Cd, Cu, Mn, Pb, and Zn were 16.68 ± 3.52, 4.26 ± 0.91, 4.81 ± 1.16, 1.00 ± 0.23, 1.83 ± 0.47, and 40.86 ± 10.81 μg/g, respectively. Significant inverse correlations were observed between MoCA with age (r = -0.543, p
To assess the tolerance, the rye-grass L. grown on soil amended with petroleum wastewater (PWW) containing four metals lead, zinc, nickel and mercury. The PWW (25 to 50%) showed remarkable increase in length and biomass. Chlorophyll 'a and b' increased with an increase of PWW from 25-50% while such contents decreased on increasing the 75-100% compared to control. The mass balance performed on the system showed the removal of 90-97.6% lead, 85.5-92.9% zinc, 78.9-85.5% nickle and 47.6-27.5% mercury. The model for the maximum metal reduction rate (Rmax) was much better for Pb (89.5) and Zn (72.1) with respect to Ni (57.3) and Hg (32.4). Survival of rye-grass (30-days, statics, and renewal exposures) was increased by 50% as compared to control. The toxicity index Y of PWW showed 0-25% deficiency level, 25-50% tolerance level, 50-90% toxic level and 90-100% lethal level. The experimental data showing high correlation coefficient (R2 = 0.98).
The world water resources are contaminated due to discharge of a large number of pollutants from industrial and domestic sources. A variety of a single and multiple units of physical, chemical, and biological processes are employed for pollutants removal from wastewater. Adsorption is the most widely utilized process due to high efficiency, simple procedure and cost effectiveness. This paper reviews the research work carried out on the use of geopolymer materials for the adsorption of heavy metals and dyes. Geopolymers possess good surface properties, heterogeneous microstructure and amorphous structure. The performance of geopolymers in the removal of heavy metals and dyes is reported comparable to other materials. The pseudo-second order kinetics and Langmuir isotherm models mostly fit to the adsorption data suggesting homogeneous distribution of adsorption sites with the formation of monolayer adsorbate on the surface of geopolymers. Adsorption of heavy metals and dyes onto geopolymers is spontaneous, endothermic and entropy driven process. Future research should focus on the enhancement of geopolymer performance, testing on pollutants other than heavy metals and dyes, and verification on real wastewater in continuous operation.
Dental enamel, an avascular, irreparable, outermost and protective layer of the human clinical crown has a potential to withstand the physico-chemical effects and forces. These properties are being regulated by a unique association among elements occurring in the crystallites setup of human dental enamel. Calcium and phosphate are the major components (hydroxyapatite) in addition to some trace elements which have a profound effect on enamel. The current review was planned to determine the aptitude of various trace elements to substitute and their influence on human dental enamel in terms of physical and chemical properties.
Fe3O4/talc nanocomposite was used for removal of Cu(II), Ni(II), and Pb(II) ions from aqueous solutions. Experiments were designed by response surface methodology (RSM) and a quadratic model was used to predict the variables. The adsorption parameters such as adsorbent dosage, removal time, and initial ion concentration were used as the independent variables and their effects on heavy metal ion removal were investigated. Analysis of variance was incorporated to judge the adequacy of the models. Optimal conditions with initial heavy metal ion concentration of 100, 92 and 270 mg/L, 120 s of removal time and 0.12 g of adsorbent amount resulted in 72.15%, 50.23%, and 91.35% removal efficiency for Cu(II), Ni(II), and Pb(II), respectively. The predictions of the model were in good agreement with experimental results and the Fe3O4/talc nanocomposite was successfully used to remove heavy metals from aqueous solutions.
Metal implants such as titanium, stainless steel and Co-Cr-Mo are used for load bearing purposes such as hip joint prostheses, fixing plates and dental root implants. For practical application, plasma-sprayed coatings of hydroxyapatite (HA) on metal implants are applied to promote early formation of strong bonds between metal implant and living bone. Plasma spray coating involves heating of HA material to a semi-molten or molten state and then propels its to a metal substrate. The plasma flame temperature is in the range of 6,000 degrees C to 16,000 degrees C but the surface temperature of the substrate rarely exceeds 150 degrees C. The HA materials are feed into the spray gun in the form of powders. Furthermore, this paper will discuss the processes of plasma-sprayed coating of HA on various types of metal implants.
This study depicts a profile of existence of heavy metals (Cu, Ni, Zn, Cd, Hg, Mn, Fe, Na, Ca, and Mg) in some important herbal plants like (H. Integrifolia, D. regia, R. communis, C. equisetifolia, N. oleander, T. populnea, M. elengi, H. schizopetalus, P. pterocarpum) from Pakistan and an antidiabetic Malaysian herbal drug product containing (Punica granatum L. (Mast) Hook, Momordica charantia L., Tamarindus indica L., Lawsonia inermis L.) using atomic absorption spectrophotometer. Heavy metals in these herbal plants and Malaysian product were in the range of 0.02-0.10 ppm of Cu, 0.00-0.02 ppm of Ni, 0.02-0.29 ppm of Zn, 0.00-0.04 ppm of Cd, 0.00-1.33 ppm of Hg, 0.00-0.54 ppm of Mn, 0.22-3.16 ppm of Fe, 0.00-9.17 ppm of Na, 3.27-15.63 ppm of Ca and 1.85-2.03 ppm of Mg. All the metals under study were within the prescribed limits except mercury. Out of 10 medicinal plants/product under study 07 were beyond the limit of mercury permissible limits. Purpose of this study is to determine heavy metals contents in selected herbal plants and Malaysian product, also to highlight the health concerns related to the presence of toxic levels of heavy metals.