Displaying publications 41 - 60 of 102 in total

Abstract:
Sort:
  1. Chandramathi S, Suresh K, Kuppusamy UR
    Parasitol Res, 2010 Mar;106(4):941-5.
    PMID: 20165878 DOI: 10.1007/s00436-010-1764-7
    Blastocystis hominis is one of the most common intestinal protozoan parasites in humans, and reports have shown that blastocystosis is coupled with intestinal disorders. In the past, researchers have developed an in vitro model using B. hominis culture filtrates to investigate its ability in triggering inflammatory cytokine responses and transcription factors in human colonic epithelial cells. Studies have also correlated the inflammation by parasitic infection with cancer. The present study provides evidence of the parasite facilitating cancer cell growth through observing the cytopathic effect, cellular immunomodulation, and apoptotic responses of B. hominis, especially in malignancy. Here we investigated the effect of solubilized antigen from B. hominis on cell viability, using peripheral blood mononuclear cells (PBMCs) and human colorectal carcinoma cells (HCT116). The gene expressions of cytokines namely interleukin 6 (IL-6), IL-8, tumor necrosis factor alpha, interferon gamma, nuclear factor kappa light-chain enhancer of activated B cells (a gene transcription factor), and proapoptotic genes namely protein 53 and cathepsin B were also studied. Results exhibited favor the fact that antigen from B. hominis, at a certain concentration, could facilitate the growth of HCT116 while having the ability to downregulate immune cell responses (PBMCs). Therefore, there is a vital need to screen colorectal cancer patients for B. hominis infection as it possesses the ability to enhance the tumor growth.
    Matched MeSH terms: HCT116 Cells
  2. Ser HL, Palanisamy UD, Yin WF, Chan KG, Goh BH, Lee LH
    Sci Rep, 2016 Apr 13;6:24247.
    PMID: 27072394 DOI: 10.1038/srep24247
    Actinobacteria from the unique intertidal ecosystem of the mangroves are known to produce novel, bioactive secondary metabolites. A novel strain known as MUSC 136(T) (=DSM 100712(T) = MCCC 1K01246(T)) which was isolated from Malaysian mangrove forest soil has proven to be no exception. Assessed by a polyphasic approach, its taxonomy showed a range of phylogenetic and chemotaxonomic properties consistent with the genus of Streptomyces. Phylogenetically, highest similarity was to Streptomyces misionensis NBRC 13063(T) (99.6%) along with two other strains (>98.9% sequence similarities). The DNA-DNA relatedness between MUSC 136(T) and these type strains ranged from 22.7 ± 0.5% to 46.5 ± 0.2%. Overall, polyphasic approach studies indicated this strain represents a novel species, for which the name Streptomyces malaysiense sp. nov. is proposed. The potential bioactivities of this strain were explored by means of antioxidant and cytotoxic assays. Intriguingly, MUSC 136(T) exhibited strong antioxidative activities as evaluated by a panel of antioxidant assays. It was also found to possess high cytotoxic effect against HCT-116 cells, which probably mediated through altering p53 protein and intracellular glutathione levels. Chemical analysis of the extract using GC-MS further affirms that the strain produces chemopreventive related metabolites.
    Matched MeSH terms: HCT116 Cells
  3. Asif M, Shafaei A, Jafari SF, Mohamed SB, Ezzat MO, Majid AS, et al.
    Toxicol Lett, 2016 Jun 3.
    PMID: 27268964 DOI: 10.1016/j.toxlet.2016.05.027
    Colorectal cancer (CRC) is one of the most common human malignant tumors worldwide. Arising from the transformation of epithelial cells in the colon and/or rectum into malignant cells, the foundation of CRC pathogenesis lies in the progressive accumulation of mutations in oncogenes and tumor-suppressor genes, such as APC and KRAS. Resistance to apoptosis is one of the key mechanisms in the development of CRC as it is for any other kind of cancer. Natural products have been shown to induce the expression of apoptosis regulators that are blocked in cancer cells. In the present study, a series of in vitro assays were employed to study the apoptosis inducing attributes of Isoledene rich sub-fraction (IR-SF) collected from the oleo-gum resin of M. ferrea. Data obtained, shows that IR-SF inhibited cell proliferation and induced typical apoptotic changes in the overall morphology of all the CRC cell lines tested. Fluorescent staining assays revealed characteristic nuclear condensation, and marked decrease in mitochondrial outer membrane potential in treated cells. In addition, an increment in the levels of ROS, caspase-8,-9 and -3 was observed. Proteomic analysis revealed that IR-SF up-regulated the expression of pro-apoptotic proteins, i.e., Bid, Bid and cytochrome c. Cytochrome c in turn activated caspases cascade resulting in the induction of apoptosis. Moreover, IR-SF significantly down-regulated Bcl-2, Bcl-w, survivin, xIAP and HSPs pro-proteins and induced DNA fragmentation and G0/G1-phase arrest in HCT 116 cells. Chemical characterization of IR-SF by GC-MS and HPLC methods identified Isoledene as one of the major compounds. Altogether, the results of the present study demonstrate that IR-SF may induce apoptosis in human colorectal carcinoma cells through activation of ROS-mediated apoptotic pathways.
    Matched MeSH terms: HCT116 Cells
  4. Yu F, Bracken CP, Pillman KA, Lawrence DM, Goodall GJ, Callen DF, et al.
    PLoS One, 2015;10(6):e0129190.
    PMID: 26061048 DOI: 10.1371/journal.pone.0129190
    p53 is a master tumour repressor that participates in vast regulatory networks, including feedback loops involving microRNAs (miRNAs) that regulate p53 and that themselves are direct p53 transcriptional targets. We show here that a group of polycistronic miRNA-like non-coding RNAs derived from small nucleolar RNAs (sno-miRNAs) are transcriptionally repressed by p53 through their host gene, SNHG1. The most abundant of these, sno-miR-28, directly targets the p53-stabilizing gene, TAF9B. Collectively, p53, SNHG1, sno-miR-28 and TAF9B form a regulatory loop which affects p53 stability and downstream p53-regulated pathways. In addition, SNHG1, SNORD28 and sno-miR-28 are all significantly upregulated in breast tumours and the overexpression of sno-miR-28 promotes breast epithelial cell proliferation. This research has broadened our knowledge of the crosstalk between small non-coding RNA pathways and roles of sno-miRNAs in p53 regulation.
    Matched MeSH terms: HCT116 Cells
  5. Corlay N, Lecsö-Bornet M, Leborgne E, Blanchard F, Cachet X, Bignon J, et al.
    J Nat Prod, 2015 Jun 26;78(6):1348-56.
    PMID: 26034885 DOI: 10.1021/acs.jnatprod.5b00206
    A large-scale in vitro screening of tropical plants using an antibacterial assay permitted the selection of several species with significant antibacterial activities. Bioassay-guided purification of the dichloromethane extract of the leaves of the Malaysian species Vitex vestita, led to the isolation of six new labdane-type diterpenoids, namely, 12-epivitexolide A (2), vitexolides B and C (3 and 4), vitexolide E (8), and vitexolins A and B (5 and 6), along with six known compounds, vitexolides A (1) and D (7), acuminolide (9), 3β-hydroxyanticopalic acid (10), 8α-hydroxyanticopalic acid (11), and 6α-hydroxyanticopalic acid (12). Their structures were elucidated on the basis of 1D and 2D NMR analyses and HRMS experiments. Both variable-temperature NMR spectroscopic studies and chemical modifications were performed to investigate the dynamic epimerization of the γ-hydroxybutenolide moiety of compounds 1-4. Compounds were assayed against a panel of 46 Gram-positive strains. Vitexolide A (1) exhibited the most potent antibacterial activity with minimal inhibitory concentration values ranging from 6 to 96 μM, whereas compounds 2 and 6-9 showed moderate antibacterial activity. The presence of a β-hydroxyalkyl-γ-hydroxybutenolide subunit contributed significantly to antibacterial activity. Compounds 1-4 and 6-9 showed cytotoxic activities against the HCT-116 cancer cell line (1 < IC50s < 10 μM) and human fetal lung fibroblast MRC5 cell line (1 < IC50s < 10 μM for compounds 1, 2, 7, 8, and 9).
    Matched MeSH terms: HCT116 Cells
  6. Soh JE, Abu N, Sagap I, Mazlan L, Yahaya A, Mustangin M, et al.
    Immunotherapy, 2019 10;11(14):1205-1219.
    PMID: 31478431 DOI: 10.2217/imt-2019-0073
    Colorectal cancer is the third commonest malignancy in Asia including Malaysia. The immunogenic cancer-testis antigens, which are expressed in a variety of cancers but with limited expression in normal tissues except the testis, represent an attractive approach to improve treatment options for colorectal cancer. We aimed to validate four PASD1 peptides as the immunotherapeutic targets in colorectal cancer. First, PASD1 mRNA and protein expression were determined via real-time polymerase chain reaction (RT-PCR) and immunohistochemistry. The PASD1 peptides specific to HLA-A*24:02 were investigated using IFN-y-ELISpot assay, followed by the cytolytic and granzyme-B-ELISpot assays to analyze the cytolytic effects of CD8+ T cells. Gene and protein expressions of PASD1 were detected in 20% and 17.3% of colorectal cancer samples, respectively. PASD1(4) peptide was shown to be immunogenic in colorectal cancer samples. CD8+ T cells raised against PASD1(4) peptide were able to lyze HLA-A*24:02+ PASD1+ cells. Our results reveal that PASD1(4) peptide represents a potential target for colorectal cancer.
    Matched MeSH terms: HCT116 Cells
  7. Koosha S, Mohamed Z, Sinniah A, Alshawsh MA
    Molecules, 2019 Jul 10;24(14).
    PMID: 31295840 DOI: 10.3390/molecules24142522
    Colon cancer is the third most common type of cancer in the world. Diosmetin (Dis), a natural O-methylated flavone, has been reported to have anti-cancer effects against different types of cancer. Although the mechanisms of action of Dis against several cancer cell lines are well reported, in vivo anti-tumorigenesis properties of this compound are still obscure. Therefore, this study aimed to investigate the anti-tumorigenesis properties of Dis against HCT-116 colon cancer xenografts in nude mice. HCT-116 colon cancer cells were injected in NCr nu/nu nude mice and treatment with Dis was initiated after the tumor volumes reached 100 mm3 and continued for four weeks. On the sacrificing date nude mice treated with 100 mg/kg of Dis showed significant lower tumor volume (264 ± 238.3 mm3) as compared to the untreated group (1428.8 ± 459.6 mm3). Anti-apoptotic Bcl-2 protein was significantly downregulated, while apoptotic protein (Bax) was significantly overexpressed in nude mice treated with 100 mg/kg Dis as compared to untreated mice. In conclusion, our in vivo results indicate that Dis significantly reduces tumor growth rate of HCT-116 colon cancer cells in nude mice at a dose of 100 mg/kg, and has no toxic effects in ICR mice up to 2000 mg/kg.
    Matched MeSH terms: HCT116 Cells
  8. Ahmad N, Anouar EH, Tajuddin AM, Ramasamy K, Yamin BM, Bahron H
    PLoS One, 2020;15(4):e0231147.
    PMID: 32287324 DOI: 10.1371/journal.pone.0231147
    This paper reports the synthesis, characterization, anticancer screening and quantum chemical calculation of a tetradentate Schiff base 2,2'-((1E,1'E)-((2,2-dimethylpropane-1,3-diyl)bis- (azanylylidene))bis(methanylylidene))bis(4-fluorophenol) (L2F) and its Pd (II) complex (PdL2F). The compounds were characterized via UV-Visible, NMR, IR spectroscopy and single crystal x-ray diffraction. Density Functional Theory (DFT) and time-dependent DFT calculations in gas and solvent phases were carried out using B3LYP, B3P86, CAM-B3LYP and PBE0 hybrid functionals combined with LanL2DZ basis set. Complexation of L2F to form PdL2F was observed to cause a bathochromic shift of the maximum absorption bands of n-π* from 327 to 410 nm; an upfield shift for δ (HC = N) from 8.30 to 7.96 ppm and a decreased wavenumber for ν(C = N) from 1637 to 1616 cm-1. Overall, the UV-Vis, NMR and IR spectral data are relatively well reproduced through DFT and TD-DFT methods. L2F and PdL2F showed IC50 of 90.00 and 4.10 μg/mL, respectively, against human colorectal carcinoma (HCT116) cell lines, signifying increased anticancer activity upon complexation with Pd (II).
    Matched MeSH terms: HCT116 Cells
  9. Kumari M, Tahlan S, Narasimhan B, Ramasamy K, Lim SM, Shah SAA, et al.
    BMC Chem, 2021 Jan 21;15(1):5.
    PMID: 33478538 DOI: 10.1186/s13065-020-00717-y
    BACKGROUND: Triazole is an important heterocyclic moiety that occupies a unique position in heterocyclic chemistry, due to its large number of biological activities. It exists in two isomeric forms i.e. 1,2,4-triazole and 1,2,3-triazole and is used as core molecule for the design and synthesis of many medicinal compounds. 1,2,4-Triazole possess broad spectrum of therapeutically interesting drug candidates such as analgesic, antiseptic, antimicrobial, antioxidant, anti-urease, anti-inflammatory, diuretics, anticancer, anticonvulsant, antidiabetic and antimigraine agents.

    METHODS: The structures of all synthesized compounds were characterized by physicochemical properties and spectral means (IR and NMR). The synthesized compounds were evaluated for their in vitro antimicrobial activity against Gram-positive (B. subtilis), Gram-negative (P. aeruginosa and E. coli) bacterial and fungal (C. albicans and A. niger) strains by tube dilution method using ciprofloxacin, amoxicillin and fluconazole as standards. In-vitro antioxidant and anti-urease screening was done by DPPH assay and indophenol method, respectively. The in-vitro anticancer evaluation was carried out against MCF-7 and HCT116 cancer cell lines using 5-FU as standards.

    RESULTS, DISCUSSION AND CONCLUSION: The biological screening results reveal that the compounds T5 (MICBS, EC = 24.7 µM, MICPA, CA = 12.3 µM) and T17 (MICAN = 27.1 µM) exhibited potent antimicrobial activity as comparable to standards ciprofloxacin, amoxicillin (MICCipro = 18.1 µM, MICAmo = 17.1 µM) and fluconazole (MICFlu = 20.4 µM), respectively. The antioxidant evaluation showed that compounds T2 (IC50 = 34.83 µg/ml) and T3 (IC50 = 34.38 µg/ml) showed significant antioxidant activity and comparable to ascorbic acid (IC50 = 35.44 µg/ml). Compounds T3 (IC50 = 54.01 µg/ml) was the most potent urease inhibitor amongst the synthesized compounds and compared to standard thiourea (IC50 = 54.25 µg/ml). The most potent anticancer activity was shown by compounds T2 (IC50 = 3.84 μM) and T7 (IC50 = 3.25 μM) against HCT116 cell lines as compared to standard 5-FU (IC50 = 25.36 μM).

    Matched MeSH terms: HCT116 Cells
  10. Yew YP, Shameli K, Mohamad SEB, Nagao Y, Teow SY, Lee KX, et al.
    Int J Pharm, 2019 Dec 15;572:118743.
    PMID: 31705969 DOI: 10.1016/j.ijpharm.2019.118743
    Superparamagnetic magnetite nanocomposites (Fe3O4-NCs) were successfully synthesized, which comprised of montmorillonite (MMT) as matrix support, Kappaphycus alvarezii (SW) as bio-stabilizer and Fe3O4 as filler in the composites to form MMT/SW/Fe3O4-NCs. Nanocomposite with 0.5 g Fe3O4 (MMT/SW/0.5Fe3O4) was selected for anticancer activity study because it revealed high crystallinity, particle size of 7.2 ± 1.7 nm with majority of spherical shape, and Ms = 5.85 emu/g with negligible coercivity. Drug loading and release studies were carried out using protocatechuic acid (PCA) as the model for anticancer drug, which showed 19% and 87% of PCA release in pH 7.4 and 4.8, respectively. Monolayer anticancer assay showed that PCA-loaded MMT/SW/Fe3O4 (MMT/SW/Fe3O4-PCA) had selectivity towards HCT116 (colorectal cancer cell line). Although MMT/SW/Fe3O4-PCA (0.64 mg/mL) showed higher IC50 than PCA (0.148 mg/mL) and MMT/SW/Fe3O4 (0.306 mg/mL, MMT/SW/Fe3O4-PCA showed more effective killing towards tumour spheroid model generated from HCT116. The IC50 for MMT/SW/Fe3O4-PCA, MMT/SW/Fe3O4 and PCA were 0.132, 0.23 and 0.55 mg/mL, respectively. This suggests the improved penetration efficiency and drug release of MMT/SW/Fe3O4-PCA towards HCT116 spheroids. Moreover, concentration that lower than 2 mg/mL MMT/SW/Fe3O4-PCA did not result any hemolysis in human blood, which suggests them to be ideal for intravenous injection. This study highlights the potential of MMT/SW/Fe3O4-NCs as drug delivery agent.
    Matched MeSH terms: HCT116 Cells
  11. Soo HC, Chung FF, Lim KH, Yap VA, Bradshaw TD, Hii LW, et al.
    PLoS One, 2017;12(1):e0170551.
    PMID: 28107519 DOI: 10.1371/journal.pone.0170551
    Cudraflavone C (Cud C) is a naturally-occurring flavonol with reported anti-proliferative activities. However, the mechanisms by which Cud C induced cytotoxicity have yet to be fully elucidated. Here, we investigated the effects of Cud C on cell proliferation, caspase activation andapoptosis induction in colorectal cancer cells (CRC). We show that Cud C inhibits cell proliferation in KM12, Caco-2, HT29, HCC2998, HCT116 and SW48 CRC but not in the non-transformed colorectal epithelial cells, CCD CoN 841. Cud C induces tumor-selective apoptosis via mitochondrial depolarization and activation of the intrinsic caspase pathway. Gene expression profiling by microarray analyses revealed that tumor suppressor genes EGR1, HUWE1 and SMG1 were significantly up-regulated while oncogenes such as MYB1, CCNB1 and GPX2 were down-regulated following treatment with Cud C. Further analyses using Connectivity Map revealed that Cud C induced a gene signature highly similar to that of protein synthesis inhibitors and phosphoinositide 3-kinase (PI3K)-AKT inhibitors, suggesting that Cud C might inhibit PI3K-AKT signaling. A luminescent cell free PI3K lipid kinase assay revealed that Cud C significantly inhibited p110β/p85α PI3K activity, followed by p120γ, p110δ/p85α, and p110α/p85α PI3K activities. The inhibition by Cud C on p110β/p85α PI3K activity was comparable to LY-294002, a known PI3K inhibitor. Cud C also inhibited phosphorylation of AKT independent of NFκB activity in CRC cells, while ectopic expression of myristoylated AKT completely abrogated the anti-proliferative effects, and apoptosis induced by Cud C in CRC. These findings demonstrate that Cud C induces tumor-selective cytotoxicity by targeting the PI3K-AKT pathway. These findings provide novel insights into the mechanism of action of Cud C, and indicate that Cud C further development of Cud C derivatives as potential therapeutic agents is warranted.
    Matched MeSH terms: HCT116 Cells
  12. Tan YJ, Lee YT, Yeong KY, Petersen SH, Kono K, Tan SC, et al.
    Future Med Chem, 2018 Sep 01;10(17):2039-2057.
    PMID: 30066578 DOI: 10.4155/fmc-2018-0052
    AIM: This study aims to investigate the mode of action of a novel sirtuin inhibitor (BZD9L1) and its associated molecular pathways in colorectal cancer (CRC) cells.

    MATERIALS & METHODS: BZD9L1 was tested against metastatic CRC cell lines to evaluate cytotoxicity, cell cycle and apoptosis, senescence, apoptosis related genes and protein expressions, as well as effect against major cancer signaling pathways.

    RESULTS & CONCLUSION: BZD9L1 reduced the viability, cell migration and colony forming ability of both HCT 116 and HT-29 metastatic CRC cell lines through apoptosis. BZD9L1 regulated major cancer pathways differently in CRC with different mutation profiles. BZD9L1 exhibited anticancer activities as a cytotoxic drug in CRC and as a promising therapeutic strategy in CRC treatment.

    Matched MeSH terms: HCT116 Cells
  13. Mekzali NW, Chee CW, Abdullah I, Lee YK, Rashid NN, Lee VS, et al.
    Med Chem, 2023;19(9):897-905.
    PMID: 37046198 DOI: 10.2174/1573406419666230410134213
    BACKGROUND: KRAS and p53 are two of the most common genetic alterations associated with colorectal cancer. New drug development targeting these mutated genes in colorectal cancer may serve as a potential treatment avenue to the current regimen.

    OBJECTIVE: The objective of the present study was to investigate the effects of alkoxy chain length and 1-hydroxy group on anticolorectal cancer activity of a series of 2-bromoalkoxyanthraquinones and corroborate it with their in silico properties.

    METHODS: In vitro anticancer activity of 2-bromoalkoxyanthraquinones was evaluated against HCT116, HT29, and CCD841 CoN cell lines, respectively. Molecular docking was performed to understand the interactions of these compounds with putative p53 and KRAS targets (7B4N and 6P0Z).

    RESULTS: 2-Bromoalkoxyanthraquinones with the 1-hydroxy group were proven to be more active than the corresponding counterparts in anticancer activity. Among the tested compounds, compound 6b with a C3 alkoxy chain exhibited the most promising antiproliferation activity against HCT116 cells (IC50 = 3.83 ± 0.05 μM) and showed high selectivity for HCT116 over CCD841 CoN cells (SI = 45.47). The molecular docking reveals additional hydrogen bonds between the 1-hydroxy group of 6b and the proteins. Compound 6b has adequate lipophilicity (cLogP = 3.27) and ligand efficiency metrics (LE = 0.34; LLE = 2.15) close to the proposed acceptable range for an initial hit.

    CONCLUSION: This work highlights the potential of the 1-hydroxy group and short alkoxy chain on anticolorectal cancer activity of 2-bromoalkoxyanthraquinones. Further optimisation may be warranted for compound 6b as a therapeutic agent against colorectal cancer.

    Matched MeSH terms: HCT116 Cells
  14. Hakim L, Alias E, Makpol S, Ngah WZ, Morad NA, Yusof YA
    Asian Pac J Cancer Prev, 2014;15(11):4651-7.
    PMID: 24969899
    The development of chemopreventive approaches using a concoction of phytochemicals is potentially viable for combating many types of cancer including colon carcinogenesis. This study evaluated the anti-proliferative effects of ginger and Gelam honey and its efficacy in enhancing the anti-cancer effects of 5-FU (5-fluorouracil) against a colorectal cancer cell line, HCT 116. Cell viability was measured via MTS (3-(4,5-dimethylthiazol-2- yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphenyl)-2H-tetrazolium) assay showing ginger inhibiting the growth of HCT 116 cells more potently (IC50 of 3mg/mL) in comparison to Gelam honey (IC50 of 75 mg/mL). Combined treatment of the two compounds (3mg/mL ginger+75 mg/mL Gelam honey) synergistically lowered the IC50 of Gelam honey to 22 mg/mL. Combination with 35 mg/mL Gelam honey markedly enhanced 5-FU inhibiting effects on the growth of HCT 116 cells. Subsequent analysis on the induction of cellular apoptosis suggested that individual treatment of ginger and Gelam honey produced higher apoptosis than 5-FU alone. In addition, treatment with the combination of two natural compounds increased the apoptotic rate of HCT 116 cells dose- dependently while treatment of either ginger or Gelam honey combined with 5-FU only showed modest changes. Combination index analysis showed the combination effect of both natural compounds to be synergistic in their inhibitory action against HCT 116 colon cancer cells (CI 0.96 < 1). In conclusion, combined treatment of Gelam honey and ginger extract could potentially enhance the chemotherapeutic effect of 5-FU against colorectal cancer.
    Matched MeSH terms: HCT116 Cells
  15. Goh TB, Koh RY, Mordi MN, Mansor SM
    Asian Pac J Cancer Prev, 2014;15(14):5659-65.
    PMID: 25081682
    BACKGROUND: To investigate the antioxidant value and anticancer functions of mitragynine (MTG) and its silane-reduced analogues (SRM) in vitro.

    MATERIALS AND METHODS: MTG and SRM was analyzed for their reducing power ability, ABTS radical inhibition and 1,1-diphenyl-2-picryl hydrazylfree radicals scavenging activities. Furthermore, the antiproliferation efficacy was evaluated using MTT assay on K 562 and HCT116 cancer cell lines versus NIH/3T3 and CCD18-Co normal cell lines respectively.

    RESULTS: SRM and MTG demonstrate moderate antioxidant value with ABTS assay (Trolox equivalent antioxidant capacity (TEAC): 2.25±0.02 mmol trolox / mmol and 1.96±0.04 mmol trolox / mmol respectively) and DPPH (IC50=3.75±0.04 mg/mL and IC50=2.28±0.02 mg/mL respectively). Both MTG and SRM demonstrate equal potency (IC50=25.20±1.53 and IC50= 22.19±1.06 respectively) towards K 562 cell lines, comparable to control, betulinic acid (BA) (IC5024.40±1.26). Both compounds showed concentration-dependent cytototoxicity effects and exert profound antiproliferative efficacy at concentration > 100 μM towards HCT 116 and K 562 cancer cell lines, comparable to those of BA and 5-FU (5-Fluorouracil). Furthermore, both MTG and SRM exhibit high selectivity towards HCT 116 cell lines with selective indexes of 3.14 and 2.93 respectively compared to 5-FU (SI=0.60).

    CONCLUSIONS: These findings revealed that the medicinal and nutitional values of mitragynine obtained from ketum leaves that growth in tropical forest of Southeast Asia and its analogues does not limited to analgesic properties but could be promising antioxidant and anticancer or chemopreventive compounds.

    Matched MeSH terms: HCT116 Cells
  16. Ali AQ, Teoh SG, Salhin A, Eltayeb NE, Khadeer Ahamed MB, Abdul Majid AM
    PMID: 24607427 DOI: 10.1016/j.saa.2014.01.086
    New derivatives of thiosemicarbazone Schiff base with isatin moiety were synthesized L1-L6. The structures of these compounds were characterized based on the spectroscopic techniques. Compound L6 was further characterized by XRD single crystal. The interaction of these compounds with calf thymus (CT-DNA) exhibited high intrinsic binding constant (k(b)=5.03-33.00×10(5) M(-1)) for L1-L3 and L5 and (6.14-9.47×10(4) M(-1)) for L4 and L6 which reflect intercalative activity of these compounds toward CT-DNA. This result was also confirmed by the viscosity data. The electrophoresis studies reveal the higher cleavage activity of L1-L3 than L4-L6. The in vitro anti-proliferative activity of these compounds against human colon cancer cell line (HCT 116) revealed that the synthesized compounds (L3, L6 and L2) exhibited good anticancer potency.
    Matched MeSH terms: HCT116 Cells
  17. Goh BH, Chan CK, Kamarudin MN, Abdul Kadir H
    J Ethnopharmacol, 2014 Apr 28;153(2):375-85.
    PMID: 24613274 DOI: 10.1016/j.jep.2014.02.036
    Swietenia macrophylla King is a traditional herb used to treat various diseases including hypertension, diabetes and cancer. Previous study demonstrated its anti-tumor effect but the potential mechanisms have not been clearly defined. The current study was to further investigate the underlying mechanism of ethyl acetate fraction of Swietenia macrophylla (SMEAF)-induced anti-proliferative effect and apoptosis in HCT116 colorectal carcinoma cell.
    Matched MeSH terms: HCT116 Cells
  18. Baharetha HM, Nassar ZD, Aisha AF, Ahamed MB, Al-Suede FS, Abd Kadir MO, et al.
    J Med Food, 2013 Dec;16(12):1121-30.
    PMID: 24328702 DOI: 10.1089/jmf.2012.2624
    Nigella sativa, commonly referred as black cumin, is a popular spice that has been used since the ancient Egyptians. It has traditionally been used for treatment of various human ailments ranging from fever to intestinal disturbances to cancer. This study investigated the apoptotic, antimetastatic, and anticancer activities of supercritical carbon dioxide (SC-CO2) extracts of the seeds of N. sativa Linn. against estrogen-dependent human breast cancer cells (MCF-7). Twelve extracts were prepared from N. sativa seeds using the SC-CO2 extraction method by varying pressure and temperature. Extracts were analyzed using FTIR and UV-Vis spectrometry. Cytotoxicity of the extracts was evaluated on various human cancer and normal cell lines. Of the 12 extracts, 1 extract (A3) that was prepared at 60°C and 2500 psi (~17.24 MPa) showed selective antiproliferative activity against MCF-7 cells with an IC50 of 53.34±2.15 μg/mL. Induction of apoptosis was confirmed by evaluating caspases activities and observing the cells under a scanning electron microscope. In vitro antimetastatic properties of A3 were investigated by colony formation, cell migration, and cell invasion assays. The elevated levels of caspases in A3 treated MCF-7 cells suggest that A3 is proapoptotic. Further nuclear condensation and fragmentation studies confirmed that A3 induces cytotoxicity through the apoptosis pathway. A3 also demonstrated remarkable inhibition in migration and invasion assays of MCF-7 cells at subcytotoxic concentrations. Thus, this study highlights the therapeutic potentials of SC-CO2 extract of N. sativa in targeting breast cancer.
    Matched MeSH terms: HCT116 Cells
  19. Aisha AF, Abu-Salah KM, Ismail Z, Majid AM
    PMID: 22818000
    BACKGROUND: Xanthones are a group of oxygen-containing heterocyclic compounds with remarkable pharmacological effects such as anti-cancer, antioxidant, anti-inflammatory, and antimicrobial activities.
    METHODS: A xanthones extract (81% α-mangostin and 16% γ-mangostin), was prepared by crystallization of a toluene extract of G. mangostana fruit rinds and was analyzed by LC-MS. Anti-colon cancer effect was investigated on HCT 116 human colorectal carcinoma cells including cytotoxicity, apoptosis, anti-tumorigenicity, and effect on cell signalling pathways. The in vivo anti-colon cancer activity was also investigated on subcutaneous tumors established in nude mice.
    RESULTS: The extract showed potent cytotoxicity (median inhibitory concentration 6.5 ± 1.0 μg/ml), due to induction of the mitochondrial pathway of apoptosis. Three key steps in tumor metastasis including the cell migration, cell invasion and clonogenicity, were also inhibited. The extract and α-mangostin up-regulate the MAPK/ERK, c-Myc/Max, and p53 cell signalling pathways. The xanthones extract, when fed to nude mice, caused significant growth inhibition of the subcutaneous tumor of HCT 116 colorectal carcinoma cells.
    CONCLUSIONS: Our data suggest new mechanisms of action of α-mangostin and the G. mangostana xanthones, and suggest the xanthones extract of as a potential anti-colon cancer candidate.
    Matched MeSH terms: HCT116 Cells
  20. Aisha AF, Abu-Salah KM, Ismail Z, Majid AM
    Molecules, 2012;17(3):2939-54.
    PMID: 22402764 DOI: 10.3390/molecules17032939
    Despite the progress in colon cancer treatment, relapse is still a major obstacle. Hence, new drugs or drug combinations are required in the battle against colon cancer. α-Mangostin and betulinic acid (BA) are cytotoxic compounds that work by inducing the mitochondrial apoptosis pathway, and cisplatin is one of the most potent broad spectrum anti-tumor agents. This study aims to investigate the enhancement of BA cytotoxicity by α-mangostin, and the cytoprotection effect of α-mangostin and BA on cisplatin-induced cytotoxicity on HCT 116 human colorectal carcinoma cells. Cytotoxicity was investigated by the XTT cell proliferation test, and the apoptotic effects were investigated on early and late markers including caspases-3/7, mitochondrial membrane potential, cytoplasmic shrinkage, and chromatin condensation. The effect of α-mangostin on four signalling pathways was also investigated by the luciferase assay. α-Mangostin and BA were more cytotoxic to the colon cancer cells than to the normal colonic cells, and both compounds showed a cytoprotective effect against cisplatin-induced cytotoxicity. On the other hand, α-mangostin enhanced the cytotoxic and apoptotic effects of BA. Combination therapy hits multiple targets, which may improve the overall response to the treatment, and may reduce the likelihood of developing drug resistance by the tumor cells. Therefore, α-mangostin and BA may provide a novel combination for the treatment of colorectal carcinoma. The cytoprotective effect of the compounds against cisplatin-induced cytotoxicity may find applications as chemopreventive agents against carcinogens, irradiation and oxidative stress, or to neutralize cisplatin side effects.
    Matched MeSH terms: HCT116 Cells
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links