In Parkinson's disease (PD), several genes have been identified as the PD-related genes, however, the regulatory mechanisms of these gene expressions have not been fully identified. In this study, we investigated the effect of inflammation, one of the major risk factors in PD on expressions of the PD-related genes. Lipopolysaccharide (LPS) was intraperitoneally administered to mature male zebrafish and gene expressions in the brains were examined by real-time PCR. In the inflammation-related genes, expressions of tnfb, il1b and il6 were increased at 2 days post administration in the 10 μg group, and tnfb expression was also increased at 4 days post administration in the 1 μg and 10 μg group. In the PD-related genes, pink1 expression was significantly decreased at 4 days, atp13a2 expression was significantly increased at 7 days, and uchl1 expression was significantly decreased at 7 days. This suggests that pink1, atp13a2 and uchl1 expressions are regulated by inflammation, and this regulatory mechanism might be involved in the progress of PD.
Kisspeptin is a hypothalamic neuropeptide, which acts directly on gonadotropin-releasing hormone (GnRH)-secreting neurons via its cognate receptor (GPR54 or Kiss-R) to stimulate GnRH secretion in mammals. In non-mammalian vertebrates, there are multiple kisspeptins (Kiss1 and Kiss2) and Kiss-R types. Recent gene knockout studies have demonstrated that fish kisspeptin systems are not essential in the regulation of reproduction. Studying the detailed distribution of kisspeptin receptor in the brain and pituitary is important for understanding the multiple action sites and potential functions of the kisspeptin system. In the present study, we generated a specific antibody against zebrafish Kiss2-R (=Kiss1Ra/GPR54-1/Kiss-R2/KissR3) and examined its distribution in the brain and pituitary. Kiss2-R-immunoreactive cell bodies are widely distributed in the brain including in the dorsal telencephalon, preoptic area, hypothalamus, optic tectum, and in the hindbrain regions. Double-labeling showed that not all but a subset of preoptic GnRH3 neurons expresses Kiss2-R, while Kiss2-R is expressed in most of the olfactory GnRH3 neurons. In the posterior preoptic region, Kiss2-R immunoreactivity was seen in vasotocin cells. In the pituitary, Kiss2-R immunoreactivity was seen in corticotropes, but not in gonadotropes. The results in this study suggest that Kiss2 and Kiss2-R signaling directly serve non-reproductive functions and indirectly subserve reproductive functions in teleosts.
Excessive production of melanin implicates hyperpigmentation disorders. Flavokawain A (FLA) and flavokawain B (FLB) have been reported with anti-melanogenic activity, but their melanogenic inhibition and toxicity effects on the vertebrate model of zebrafish are still unknown. In the present study, cytotoxic as well as melanogenic effects of FLA and FLB on cellular melanin content and tyrosinase activity were evaluated in α-MSH-induced B16/F10 cells. Master regulator of microphthalmia-associated transcription factor (Mitf) and the other downstream melanogenic-related genes were verified via quantitative real time PCR (qPCR). Toxicity assessment and melanogenesis inhibition on zebrafish model was further observed. FLA and FLB significantly reduced the specific cellular melanin content by 4.3-fold and 9.6-fold decrement, respectively in α-MSH-induced B16/F10 cells. Concomitantly, FLA significantly reduced the specific cellular tyrosinase activity by 7-fold whilst FLB by 9-fold. The decrement of melanin production and tyrosinase activity were correlated with the mRNA suppression of Mitf which in turn down-regulate Tyr, Trp-1 and Trp-2. FLA and FLB exhibited non-toxic effects on the zebrafish model at 25 and 6.25 µM, respectively. Further experiments on the zebrafish model demonstrated successful phenotype-based depigmenting activity of FLA and FLB under induced melanogenesis. To sum up, our findings provide an important first key step for both of the chalcone derivatives to be further studied and developed as potent depigmenting agents.
Fish are a major source of beneficial n-3 LC-PUFA in human diet, and there is considerable interest to elucidate the mechanism and regulatory aspects of LC-PUFA biosynthesis in farmed species. Long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis involves the activities of two groups of enzymes, the fatty acyl desaturase (Fads) and elongase of very long-chain fatty acid (Elovl). The promoters of elovl5 elongase, which catalyses the rate-limiting reaction of elongating polyunsaturated fatty acid (PUFA), have been previously described and characterized from several marine and diadromous teleost species. We report here the cloning and characterization of elovl5 promoter from two freshwater fish species, the carnivorous snakehead fish (Channa striata) and zebrafish. Results show the presence of sterol-responsive elements (SRE) in the core regulatory region of both promoters, suggesting the importance of sterol regulatory element-binding protein (Srebp) in the regulation of elovl5 for both species. Mutagenesis luciferase and electrophoretic mobility shift assays further validate the role of SRE for basal transcriptional activation. In addition, several Sp1-binding sites located in close proximity with SRE were present in the snakehead promoter, with one having a potential synergy with SRE in the regulation of elovl5 expression. The core zebrafish elovl5 promoter fragment also directed in vivo expression in the yolk syncytial layer of developing zebrafish embryos.
Glial cell line-derived neurotrophic factor (GDNF) has been reported to enhance dopaminergic neuron survival and differentiation in vitro and in vivo, although those results are still being debated. Glial cell line-derived neurotrophic factor (gdnf) is highly conserved in zebrafish and plays a role in enteric nervous system function. However, little is known about gdnf function in the teleost brain. Here, we employed clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 to impede gdnf function in the maintenance of dopaminergic neuron development. Genotyping of gdnf crispants revealed successful deletions of the coding region with various mutant band sizes and down-regulation of gdnf transcripts at 1, 3 and 7 day(s) post fertilization. Notably, ~20% reduction in ventral diencephalic dopaminergic neuron numbers in clusters 8 and 13 was observed in the gdnf-deficient crispants. In addition, gdnf depletion caused a modest reduction in dopaminergic neurogenesis as determined by 5-ethynyl-2'-deoxyuridine pulse chase assay. These deleterious effects could be partly attributed to deregulation of dopaminergic neuron fate specification-related transcription factors (otp,lmx1b,shha,and ngn1) in both crispants and established homozygous mutants with whole mount in-situ hybridization (WISH) on gdnf mutants showing reduced otpb and lmx1b.1 expression in the ventral diencephalon. Interestingly, locomotor function of crispants was only impacted at 7 dpf, but not earlier. Lastly, as expected, gdnf deficiency heightened crispants vulnerability to 1-methyl-4-phenylpyridinium toxic insult. Our results suggest conservation of teleost gdnf brain function with mammals and revealed the interactions between gdnf and transcription factors in dopaminergic neuron differentiation.
Several theories have been proposed to explain the mechanisms of substance use in schizophrenia. Brain neurons pose a potential to provide novel insights into the association between opioid addiction, withdrawal, and schizophrenia. Thus, we exposed zebrafish larvae at 2 days post-fertilization (dpf) to domperidone (DPM) and morphine, followed by morphine withdrawal. Drug-induced locomotion and social preference were assessed, while the level of dopamine and the number of dopaminergic neurons were quantified. In the brain tissue, the expression levels of genes associated with schizophrenia were measured. The effects of DMP and morphine were compared to vehicle control and MK-801, a positive control to mimic schizophrenia. Gene expression analysis revealed that α1C, α1Sa, α1Aa, drd2a, and th1 were up-regulated after 10 days of exposure to DMP and morphine, while th2 was down-regulated. These two drugs also increased the number of positive dopaminergic neurons and the total dopamine level but reduced the locomotion and social preference. The termination of morphine exposure led to the up-regulation of th2, drd2a, and c-fos during the withdrawal phase. Our integrated data implicate that the dopamine system plays a key role in the deficits in social behavior and locomotion that are common in the schizophrenia-like symptoms and opioid dependence.
Lyotropic liquid crystalline nanoassemblies (LLCNs) are internally self-assembled (ISA)-somes formed by amphiphilic molecules in a mixture comprising a lipid, stabilizer, and/or surfactant and aqueous media/dispersant. LLCNs are unique nanoassemblies with versatile applications in a wide range of biomedical functions. However, they comprise a nanosystem that is yet to be fully explored for targeted systemic treatment of breast cancer. In this study, LLCNs proposed for gemcitabine and thymoquinone (Gem-TQ) co-delivery were prepared from soy phosphatidylcholine (SPC), phytantriol (PHYT), or glycerol monostearate (MYVR) in optimized ratios containing a component of citric and fatty acid ester-based emulsifier (Grinsted citrem) or a triblock copolymer, Pluronic F127 (F127). Hydrodynamic particle sizes determined were below 400 nm (ranged between 96 and 365 nm), and the series of nanoformulations displayed negative surface charge. Nonlamellar phases identified by small-angle X-ray scattering (SAXS) profiles comprise the hexagonal, cubic, and micellar phases. In addition, high entrapment efficiency that accounted for 98.3 ± 0.1% of Gem and 99.5 ± 0.1% of TQ encapsulated was demonstrated by the coloaded nanocarrier system, SPC/citrem/Gem-TQ hexosomes. Low cytotoxicity of SPC-citrem hexosomes was demonstrated in MCF10A cells consistent with hemo- and biocompatibility observed in zebrafish (Danio rerio) embryos for up to 96 h postfertilization (hpf). SPC/citrem/Gem-TQ hexosomes demonstrated IC50 of 24.7 ± 4.2 μM in MCF7 breast cancer cells following a 24 h treatment period with the moderately synergistic interaction between Gem and TQ retained (CI = 0.84). Taken together, biocompatible SPC/citrem/Gem-TQ hexosomes can be further developed as a multifunctional therapeutic nanodelivery approach, plausible for targeting breast cancer cells by incorporation of targeting ligands.
The central nervous system (CNS) of the non-mammalian vertebrates has better neuroregenerative capability as compared with the mammalian CNS. Regeneration of habenula was observed 40 days after damage in zebrafish. During the early stage of regeneration, we found a significant increase of apoptotic cells on day-1 post-damage and of proliferative cells on day-3 post-damage. To identify the molecular factor(s) involved in the early stages of neuroregeneration, differentially expressed proteins during sham, 20- and 40-h post-habenula damage were investigated by proteomic approach by using two-dimensional differential gel electrophoresis (2D-DIGE) coupled with Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight (MALDI-ToF) and tandem mass spectrometry. Protein profiles revealed 17 differentially (>1.5-fold) expressed proteins: 10 upregulated, 4 downregulated, 2 proteins were found to be downregulated at the early stage but upregulated at a later stage, and 1 protein was found to be upregulated at 2 different time points. All proteins identified can be summarized under few molecular processes involved in the early stages of neuroregeneration in zebrafish CNS: apoptosis regulation (Wnt inhibitory factor 1 [WIF1]), neuroprotection (metallothionein), cell proliferation (Spred2, ependymin, Lhx1, and Wnts), differentiation (Spred2, Lhx9, and Wnts), and morphogenesis (cytoplasmic actins and draculin). These protein profiling results suggest that drastic molecular changes occur in the neuroregenerative process during this period, which includes cell proliferation, differentiation, and protection.
The kiss1/gpr54 signaling system is considered to be a critical regulator of reproduction in most vertebrates. However, this presumption has not been tested vigorously in nonmammalian vertebrates. Distinct from mammals, multiple kiss1/gpr54 paralogous genes (kiss/kissr) have been identified in nonmammalian vertebrates, raising the possibility of functional redundancy among these genes. In this study, we have systematically generated the zebrafish kiss1(-/-), kiss2(-/-), and kiss1(-/-);kiss2(-/-) mutant lines as well as the kissr1(-/-), kissr2(-/-), and kissr1(-/-);kissr2(-/-) mutant lines using transcription activator-like effector nucleases. We have demonstrated that spermatogenesis and folliculogenesis as well as reproductive capability are not impaired in all of these 6 mutant lines. Collectively, our results indicate that kiss/kissr signaling is not absolutely required for zebrafish reproduction, suggesting that the kiss/kissr systems play nonessential roles for reproduction in certain nonmammalian vertebrates. These findings also demonstrated that fish and mammals have evolved different strategies for neuroendocrine control of reproduction.
Sprouty-related protein-2 (Spred-2) is a negative regulator of extracellular signal-regulated kinases (ERK) pathway, which is important for cell proliferation, neuronal differentiation, plasticity and survival. Nevertheless, its general molecular characteristics such as gene expression patterns and potential role in neural repair in the brain remain unknown. Thus, this study aimed to characterise the expression of spred-2 in the zebrafish brain. Digoxigenin-in situ hybridization showed spred-2 mRNA-expressing cells were mainly seen in the proliferative zones such as the olfactory bulb, telencephalon, optic tectum, cerebellum, and the dorsal and ventral hypothalamus, and most of which were neuronal cells. To evaluate the potential role of spred-2 in neuro-regeneration, spred-2 gene expression was examined in the dorsal telencephalon followed by mechanical-lesion. Real-time PCR showed a significant reduction of spred-2 mRNA levels in the telencephalon on 1-day till 2-days post-lesion and gradually increased to normal levels as compared with intact. Furthermore, to confirm involvement of Spred-2 signalling in the cell proliferation after brain injury, double-labelling of spred-2 in-situ hybridization with immunofluorescence of BrdU and phosphorylated-ERK1/2 (p-ERK1/2), a downstream of Spred-2 was performed. Increase of BrdU and p-ERK1/2 immunoreactive cells suggest that a decrease in spred-2 after injury might associated with activation of the ERK pathway to stimulate cell proliferation in the adult zebrafish brain. The present study demonstrates the possible role of Spred-2 signalling in cell proliferative phase during the neural repair in the injured zebrafish brain.
pbx1, a TALE (three-amino acid loop extension) homeodomain transcription factor, is involved in a diverse range of developmental processes. We examined the expression of pbx1 during zebrafish development by in situ hybridization. pbx1 transcripts could be detected in the central nervous system and pharyngeal arches from 24 hpf onwards. In the swim bladder anlage, pbx1 was detected as early as 28 hpf, making it the earliest known marker for this organ. Morpholino-mediated gene knockdown of pbx1 revealed that the swim bladder failed to inflate, with eventual lethality occurring by 8 dpf. The knockdown of pbx1 did not perturb the expression of prdc and foxA3, with both early swim bladder markers appearing normally at 36 and 48 hpf, respectively. However, the expression of anxa5 was completely abolished by pbx1 knockdown at 60 hpf suggesting that pbx1 may be required during the late stage of swim bladder development.
The habenula is a phylogenetically conserved epithalamic structure, which conveys negative information via inhibition of mesolimbic dopamine neurons. We have previously shown the expression of kisspeptin (Kiss1) in the habenula and its role in the modulation of fear responses in the zebrafish. In this study, to investigate whether habenular Kiss1 regulates fear responses via dopamine neurons in the zebrafish, Kiss1 peptides were intracranially administered close to the habenula, and the expression of dopamine-related genes (th1, th2 and dat) were examined in the brain using real-time PCR and dopamine levels using LC-MS/MS. th1 mRNA levels and dopamine levels were significantly increased in the telencephalon 24-h and 30-min after Kiss1 administration, respectively. In fish administered with Kiss1, expression of neural activity marker gene, npas4a and kiss1 gene were significantly decreased in the ventral habenula. Application of neural tracer into the median raphe, site of habenular Kiss1 neural terminal projections showed tracer-labelled projections in the medial forebrain bundle towards the telencephalon where dopamine neurons reside. These results suggest that Kiss1 negatively regulates its own neuronal activity in the ventral habenula via autocrine action. This, in turn affects neurons of the median raphe via interneurons, which project to the telencephalic dopaminergic neurons.
Kiss1, a neuropeptide predominantly expressed in the habenula, modulates the serotonin (5-HT) system to decrease odorant cue [alarm substance (AS)]-evoked fear behaviour in the zebrafish. The purpose of this study was to assess the interaction of Kiss1 with the 5-HT system as well as to determine the involvement of the 5-HT receptor subtypes in AS-evoked fear. We utilized 0. 28 mg/kg WAY 100635 (WAY), a selective 5-HT1A receptor antagonist, to observe the effects of Kiss1 administration on AS-evoked fear. We found WAY significantly inhibited the anxiolytic effects of Kiss1 (p < 0.001) with an exception of freezing behaviour. Based on this, we utilized 92.79 mg/kg methysergide, a 5-HT1 and 5-HT2 receptor antagonist, and found that methysergide significantly blocked the anxiolytic effects of Kiss1 in the presence of the AS (p < 0.001). From this, we conclude that Kiss1 modulates AS-evoked fear responses mediated by the 5-HT1A and 5-HT2 receptors. Kiss1 peptide intracranially (IC) administrated has been shown to decrease olfactory, alarm substance (AS)-evoked fear response. Blockade of the 5-HT1A receptor utilizing WAY 100635 (0.28 mg/kg) and the 5-HT1 and 5-HT2 receptor utilizing methysergide (92.79 mg/kg) produced increased AS-evoked fear responses that were unable to be overcome even during the recovery period. Blockade of this 5-HT system followed by Kiss1 administration showed that the peptide was unable to recover the anxiolytic effects upon 5-HT1A blocking using WAY 100635 with the exception of freezing behaviour while methysergide significantly blocked all the anxiolytic effects of Kiss1. These findings implicate that Kiss1 could modulate AS-evoked fear responses mediated by 5-HT1A and 5-HT2 receptors.
Kisspeptin, a neuropeptide encoded by the KISS1/Kiss1, and its cognate G protein-coupled receptor, GPR54 (kisspeptin receptor, Kiss-R), are critical for the control of reproduction in vertebrates. We have previously identified two kisspeptin genes (kiss1 and kiss2) in the zebrafish, of which kiss1 neurons are located in the habenula, which project to the median raphe. kiss2 neurons are located in the hypothalamic nucleus and send axonal projections to gonadotropin-releasing hormone neurons and regulate reproductive functions. However, the physiological significance of the Kiss1 expressed in the habenula remains unknown. Here we demonstrate the role of habenular Kiss1 in alarm substance (AS)-induced fear response in the zebrafish. We found that AS-evoked fear experience significantly reduces kiss1 and serotonin-related genes (plasmacytoma expressed transcript 1 and solute carrier family 6, member 4) in the zebrafish. Furthermore, Kiss1 administration suppressed the AS-evoked fear response. To further evaluate the role of Kiss1 in fear response, zebrafish Kiss1 peptide was conjugated to saporin (SAP) to selectively inactivate Kiss-R1-expressing neurons. The Kiss1-SAP injection significantly reduced Kiss1 immunoreactivity and c-fos mRNA in the habenula and the raphe compared with control. Furthermore, 3 d after Kiss1-SAP injection, the fish had a significantly reduced AS-evoked fear response. These findings provide an insight into the role of the habenular kisspeptin system in inhibiting fear.
In addition to vision, light information is used to regulate a range of animal physiology. Such nonimage-forming functions of light are mediated by nonvisual photoreceptors expressed in distinct neurons in the retina and the brain in most vertebrates. A nonvisual photoreceptor vertebrate ancient long opsin (VAL-opsin) possesses two functional isoforms in the zebrafish, encoded by valopa and valopb, which has received little attention. To delineate the neurochemical identities of valop cells and to test for colocalization of the valop isoforms, we used in situ hybridization to characterize the expression of the valop genes along with that of neurotransmitters and a neuropeptide known to be present at the sites of valop expression. Double labeling showed that the thalamic valop population coexpresses valopa and valopb. All the thalamic valop cells overlapped with a GABAergic cell mass that continues from the anterior nucleus to the intercalated thalamic nucleus. A novel valopa cell population found in the superior raphe was serotonergic in nature. A valopb cell population in the Edinger-Westphal nucleus was identified as containing thyrotropin-releasing hormone. Valopb cells localized in the hindbrain intermediate reticular formation were noncholinergic in nature (nonmotorneurons). Thus, the presence of valop cell populations in different brain regions with coexpression of neurotransmitters and neuropeptides and the colocalization of valop isoforms in the thalamic cell population indicate regulatory and functional complexity of VAL-opsin in the brain of the zebrafish.
The Kiss1/KISS1 gene has recently been implicated as a potent hypothalamic regulator of reproductive functions, in particular, the onset of puberty in mammals. In zebrafish (Danio rerio), there are two kiss1 homologues (kiss1 and kiss2) expressed in the brain: Kiss2-expressing neurons in the hypothalamic nuclei are considered potent regulators of reproduction, whereas the role of Kiss1-expressing neurons in the habenula remains unknown. We first analyzed the expression of kiss1 mRNA in a transgenic zebrafish, in which the habenula-interpeduncular nucleus (IPN) pathway is labelled with green fluorescent protein, and our application of a biocytin neural tracer into the habenula showed the presence of neuronal projections of Kiss1 neurons to the ventral IPN. Therefore, we speculated that kiss1 neurons might regulate the serotonergic system in the raphe. However, laser microdissection followed by real-time PCR revealed the expression of Kiss1 receptor (kissr1) mRNA in the habenula and the ventral IPN but not in the dorsal IPN or the serotonergic neurons in the raphe nuclei. Dual-fluorescent in situ hybridization revealed the coexpression of kiss1 and kissr1 mRNA in the habenula. Administration of Kiss1 significantly decreased the level of kiss1 mRNA (0.3- to 0.5-fold, P < 0.001), but the level of c-fos mRNA was increased (≈ 3-fold, P < 0.05) in the ventral habenula, suggesting that there is autocrine regulation of the kiss1 gene. Kiss1 administration significantly increased the c-fos mRNA levels in the raphe nuclei (2.5-fold, P < 0.001) and genes involved in the regulation of serotonin levels (pet1 and slc6a4a; 3.3- and 2.2-fold, P < 0.01). These findings suggest that the autocrine-regulated habenular Kiss1 neurons indirectly regulate the serotonergic system in the raphe nuclei through the IPN in the zebrafish.
MicroRNAs (miRNAs) are vital in modulating lifespan and various biological processes including vascular function. The pivotal roles of mammalian target of rapamycin (mTOR) in regulating senescence and angiogenesis have been extensively described. However, the roles of its orthologue, zebrafish target of rapamycin (zTOR) in senescence and angiogenesis remain to be unravelled. In the present study, we aimed to investigate the role of zTOR and identify miRNAs associated with senescence and angiogenesis.
Epilepsy is a devastating neurological condition exhibited by repeated spontaneous and unpredictable seizures afflicting around 70 million people globally. The basic pathophysiology of epileptic seizures is still elusive, reflecting an extensive need for further research. Developing a novel animal model is crucial in understanding disease mechanisms as well as in assessing the therapeutic target. Most of the pre-clinical epilepsy research has been focused on rodents. Nevertheless, zebrafish disease models are relevant to human disease pathophysiology hence are gaining increased attention nowadays. The current study for the very first time developed a pilocarpine-induced chronic seizure-like condition in adult zebrafish and investigated the modulation in several neuroinflammatory genes and neurotransmitters after pilocarpine exposures. Seizure score analysis suggests that compared to a single dose, repeated dose pilocarpine produces chronic seizure-like effects maintaining an average seizure score of above 2 each day for a minimum of 10 days. Compared to the single dose pilocarpine treated group, there was increased mRNA expression of HMGB1, TLR4, TNF-α, IL-1, BDNF, CREB-1, and NPY; whereas decreased expression of NF-κB was upon the repeated dose of pilocarpine administration. In addition, the epileptic group demonstrates modulation in neurotransmitters levels such as GABA, Glutamate, and Acetylcholine. Moreover, proteomic profiling of the zebrafish brain from the normal and epileptic groups from LCMS/MS quantification detected 77 and 13 proteins in the normal and epileptic group respectively. Summing up, the current investigation depicted that chemically induced seizures in zebrafish demonstrated behavioral and molecular alterations similar to classical rodent seizure models suggesting the usability of adult zebrafish as a robust model to investigate epileptic seizures.
Fumonisin B1 (FB1) is a common mycotoxin produced by Fusarium species particularly F. proliferatum and F. verticillioides. The toxin produced can cause adverse effects on humans and animals. The objectives of this study were to detect the production of FB1 based on the amplification of FUM1 gene, to quantify FB1 produced by the isolates using Ultra-fast Liquid Chromatography (UFLC) analysis, to examine the embryotoxicity effect of FB1 and to determine EC50 toward the larvae of zebrafish (Danio rerio). Fifty isolates of Fusarium species were isolated from different hosts throughout Malaysia. Successful amplification of the FUM1 gene showed the presence of this gene (800 bp) in the genome of 48 out of 50 isolates. The highest level of FB1 produced by F. proliferatum isolate B2433 was 6677.32 ppm meanwhile F. verticillioides isolate J1363 was 954.01 ppm. From the assessment of embryotoxicity test of FB1 on larvae of zebrafish, five concentrations of FB1 (0.43 ppm, 0.58 ppm, 0.72 ppm, 0.87 ppm and 1.00 ppm) were tested. Morphological changes of the FB1 exposed-larvae were observed at 24 to 168 hpf. The mortality rate and abnormality of zebrafish larvae were significantly increased at 144 hpf exposure. Meanwhile, the spontaneous tail coiling showed a significant difference. There were no significant differences in the heartbeat rate. As a conclusion, the presence of FUM1 in every isolate can be detected by FUM1 gene analysis and both of the species produced different concentrations of FB1. This is the first report of FB1 produced by Fusarium species gave a significant effect on zebrafish development.
There are serious concerns over the adverse impacts of microplastics (MPs) on living organisms. The main objective of this study was to test the effects of MPs on the total length, weight, condition factor (CF), transcriptional level of antioxidant, anti and pro-apoptotic, and neurotransmitter genes, and the histopathology of the gill, liver, brain, kidney, and intestine in the larvae of zebrafish (Danio rerio). Fish were exposed to one of three levels of pristine low-density polyethylene (LDPE) fragments (5, 50, or 500 μg/L) for 10 or 20 days. No significant changes were observed in any of the selected biomarkers across MP concentrations at days 10 or 20. The expression of casp9 (caspase 9, apoptosis-related cysteine protease), casp3a (caspase 3, apoptosis-related cysteine protease a) and cat (catalase), however, were significantly lower in the larvae sampled at day 20 than day 10. We provide evidence that virgin short-term exposure to LDPE fragments has minimal impact on biomarker responses in D. rerio larvae.
Matched MeSH terms: Zebrafish/anatomy & histology; Zebrafish/genetics*; Zebrafish/growth & development