CAPSULE: The monitoring of spatial variation and source of heavy metals pollution at the northern and southern regions of the Straits of Malacca, Malaysia, using chemometric analysis.
METHODOLOGY/PRINCIPAL FINDINGS: We obtained patient demographic and residential information and clinical presentation and medical history data from 254 confirmed melioidosis cases and 384 matched controls attending Hospital Sultanah Bahiyah (HSB), the main tertiary hospital of Alor Setar, the capital city of Kedah, during the period between 2005 and 2011. Crude and adjusted odds ratios employing conditional logistic regression analysis were used to assess if melioidosis in this region is related to risk factors connected with socio-demographics, various behavioural characteristics, and co-occurring diseases. Spatial clusters of cases were determined using a continuous Poisson model as deployed in SaTScan. A land cover map in conjunction with mapped case data was used to determine disease-land type associations using the Fisher's exact test deploying simulated p-values. Crude and adjusted odds ratios indicate that melioidosis in this region is related to gender (males), race, occupation (farming) and co-occurring chronic diseases, particularly diabetes. Spatial analyses of disease incidence, however, showed that disease risk and geographic clustering of cases are related strongly to land cover types, with risk of disease increasing non-linearly with the degree of human modification of the natural ecosystem.
CONCLUSIONS/SIGNIFICANCE: These findings indicate that melioidosis represents a complex socio-ecological public health problem in Kedah, and that its control requires an understanding and modification of the coupled human and natural variables that govern disease transmission in endemic communities.
METHOD: This study used micro-level household datasets from multiple indicator cluster surveys (MICS) to estimate the DMI. To find out how different the DMI scores were, the inequality ratio and slope were used. This study further utilized spatial autocorrelation tests to determine the magnitude and location of the spatial dependence of the clusters with high and low mortality rates. The Geographically Weighted Regression (GWR) model was also applied to examine the spatial impact of socioeconomic, environmental, health, and housing attributes on DMI.
RESULTS: The inequality ratio for DMI showed that the upper decile districts are 16 times more prone to mortalities than districts in the lower decile, and the districts of Baluchistan depicted extreme spatial heterogeneity in terms of DMI. The findings of the Local Indicator of Spatial Association (LISA) and Moran's test confirmed spatial homogeneity in all mortalities among the districts in Pakistan. The H-H clusters of maternal mortality and DMI were in Baluchistan, and the H-H clusters of child mortality were seen in Punjab. The results of GWR showed that the wealth index quintile has a significant spatial impact on DMI; however, improved sanitation, handwashing practices, and antenatal care adversely influenced DMI scores.
CONCLUSION: The findings reveal a significant disparity in DMI and spatial relationships among all mortalities in Pakistan's districts. Additionally, socioeconomic, environmental, health, and housing variables have an impact on DMI. Notably, spatial proximity among individuals who are at risk of death occurs in areas with elevated mortality rates. Policymakers may mitigate these mortalities by focusing on vulnerable zones and implementing measures such as raising public awareness, enhancing healthcare services, and improving access to clean drinking water and sanitation facilities.
METHODS: Poultry meat (breast, wing, thigh, and keel) as well as the contact surfaces of weighing scales and cutting boards were sampled to detect ESBL-EC by using culture and disk combination methods and polymerase chain reaction assays. Besides, questionnaire was used to obtain data and information pertaining to those operational practices that may possibly explain the occurrence of ESBL-EC. The data were analysed using logistic regression analysis at 95 % CI.
RESULTS: The overall prevalence of ESBL-EC was 48.8 % (95 % CI, 42 - 55 %). Among the risk factors that were explored, type of countertop, sanitation of the stall environment, source of cleaning water, and type of cutting board were found to be significantly associated with the presence of ESBL-EC.
CONCLUSIONS: Thus, in order to prevent or reduce the presence of ESBL-EC and other contaminants at the retail-outlet, there is a need to design a process control system based on the current prevailing practices in order to reduce cross contamination, as well as to improve food safety and consumer health.
METHODOLOGY: Parallel virology was used to investigate the phenotypes of duck and mosquito-derived isolates of TMUV. Molecular biology and bioinformatics methods were employed to investigate the genetic characteristics and evolution of TMUV.
PRINCIPAL FINDINGS: The plaque diameter of duck-derived isolates of TMUV was larger than that of mosquito-derived isolates. The cytopathic effect (CPE) in mammalian cells occurred more rapidly induced by duck-derived isolates than by mosquito-derived isolates. Furthermore, duck-derived isolates required less time to reach maximum titer, and exhibited higher viral titer. These findings suggested that poultry-derived TMUV isolates were more invasive and had greater expansion capability than the mosquito-derived isolates in mammalian cells. Variations in amino acid loci in TMUV E gene sequence revealed two mutated amino acid loci in strains isolated from Malaysia, Thailand, and Chinese mainland compared with the prototypical strain of the virus (MM1775). Furthermore, TMUV isolates from the Chinese mainland had six common variations in the E gene loci that differed from the Southeast Asian strains. Phylogenetic analysis indicated that TMUV did not exhibit a species barrier in avian species and consisted of two lineages: the Southeast Asian and the Chinese mainland lineages. Molecular traceability studies revealed that the recent common evolutionary ancestor of TMUV might have appeared before 1934 and that Malaysia, Thailand and Shandong Province of China represent the three main sources related to TMUV spread.
CONCLUSIONS: The current broad distribution of TMUV strains in Southeast Asia and Chinese mainland exhibited longer-range diffusion and larger-scale propagation. Therefore, in addition to China, other Asian and European countries linked to Asia have used improved measures to detect and monitor TMUV related diseases to prevent epidemics in poultry.