Displaying publications 41 - 50 of 50 in total

Abstract:
Sort:
  1. Poh ME, Liam CK, Rajadurai P, Chai CS
    J Thorac Dis, 2018 Jul;10(7):E560-E563.
    PMID: 30174934 DOI: 10.21037/jtd.2018.06.122
    We report the first case of epithelial-to-mesenchymal transition (EMT) as the cause of acquired resistance to the second-generation EGFR-tyrosine kinase inhibitor (TKI), afatinib in a patient with advanced non-small cell lung cancer (NSCLC) harboring a sensitizing EGFR mutation. Patients with EGFR-mutant NSCLC inevitably develop acquired resistance while on EGFR-TKI treatment. EMT which renders cancer cells more invasive and migratory is one of the mechanisms of acquired resistance to EGFR-TKIs and correlates with a poor prognosis. Possible therapeutic strategies in patients with EMT include blocking M2 muscarinic receptor signalling, targeting EMT with histone deacetylase inhibitors such as entinostat and MEK-inhibitors such as selumetinib, inhibition of microRNAs, immunotherapy and inhibiting fibroblast growth factor receptor-1.
    Matched MeSH terms: Protein-Tyrosine Kinases
  2. Karim ME, Shetty J, Islam RA, Kaiser A, Bakhtiar A, Chowdhury EH
    Pharmaceutics, 2019 Feb 20;11(2).
    PMID: 30791612 DOI: 10.3390/pharmaceutics11020089
    Inorganic nanoparticles hold great potential in the area of precision medicine, particularly for treating cancer owing to their unique physicochemical properties, biocompatibility and improved pharmacokinetics properties compared to their organic counterparts. Here we introduce strontium sulfite nanoparticles as new pH-responsive inorganic nanocarriers for efficient transport of siRNAs into breast cancer cells. We employed the simplest nanoprecipitation method to generate the strontium sulfite nanoparticles (SSNs) and demonstrated the dramatic roles of NaCl and d-glucose in particle growth stabilization in order to produce even smaller nanosize particles (Na-Glc-SSN) with high affinity towards negatively charged siRNA, enabling it to efficiently enter the cancer cells. Moreover, the nanoparticles were found to be degraded with a small drop in pH, suggesting their potential capability to undergo rapid dissolution at endosomal pH so as to release the payload. While these particles were found to be nontoxic to the cells, they showed higher potency in facilitating cancer cell death through intracellular delivery and release of oncogene-specific siRNAs targeting ros1 and egfr1 mRNA transcripts, than the strontium sulfite particles prepared in absence of NaCl and d-glucose, as confirmed by growth inhibition assay. The mouse plasma binding analysis by Q-TOF LC-MS/MS demonstrated less protein binding to smaller particles of Na-Glc-SSNs. The biodistribution studies of the particles after 4 h of treatment showed Na-Glc-SSNs had less off-target distribution than SSNs, and after 24 h, all siRNAs were cleared from all major organs except the tumors. ROS1 siRNA with its potential therapeutic role in treating 4T1-induced breast tumor was selected for subsequent in vivo tumor regression study, revealing that ROS1 siRNA-loaded SSNs exerted more significant anti-tumor effects than Na-Glc-SSNs carrying the same siRNA following intravenous administration, without any systemic toxicity. Thus, strontium sulfite emerged as a powerful siRNA delivery tool with potential applications in cancer gene therapy.
    Matched MeSH terms: Protein-Tyrosine Kinases
  3. Sosroseno W, Bird PS, Seymour GJ
    Anaerobe, 2011 Oct;17(5):246-51.
    PMID: 21736946 DOI: 10.1016/j.anaerobe.2011.06.006
    Nitric oxide (NO) may play a crucial role in the pathogenesis of periodontal disease and, hence, the aim of the present study was to test the hypothesis that Aggregatibacter actinomycetemcomitans surface-associated material (SAM) stimulates inducible nitric oxide synthase (iNOS) activity and NO production by the murine macrophage cell line RAW264.7. Cells were stimulated with untreated or heat-treated A. actinomycetemcomitans SAM and with or without pre-treatment with L-N(6)-(1-Iminoethyl)-lysine (L-NIL) (an iNOS inhibitor), polymyxin B, interferon-gamma (IFN-γ) and Interleukin-4 (IL-4), IL-10, genistein [a protein tyrosine kinase (PTK) inhibitor], bisindolylmaleimide [a protein kinase C (PKC) inhibitor], bromophenacyl bromide (BPB) [a phospholipase A(2) (PLA2) inhibitor] or wortmannin [phosphatidylinositol 3-kinase (PI-3K) inhibitor]. The iNOS activity and nitrite production in the cell cultures were determined. Untreated but not heat-treated A. actinomycetemcomitans SAM-stimulated both iNOS activity and nitrite production in RAW264.7 cells. L-NIL, IL-4, IL-10, genistein, bisindolylmaleimide, or BPB, suppressed but IFN-γ enhanced both iNOS activity and nitrite production by A. actinomycetemcomitans SAM-stimulated cells. Wortmannin and polymyxin B failed to alter both iNOS activity or nitrite production by A. actinomycetemcomitans SAM treated cells. Therefore, the present study suggests that a heat-sensitive protein constituent(s) of A. actinomycetemcomitans SAM stimulates both iNOS activity and nitrite production by RAW264.7 cells in a cytokine, PTK, PKC, and PLA(2) but not PI-3K-dependent fashion.
    Matched MeSH terms: Protein-Tyrosine Kinases/metabolism
  4. Ameli F, Rose IM, Masir N
    Asian Pac J Cancer Prev, 2015;16(6):2385-90.
    PMID: 25824769
    BACKGROUND: Invasive ductal (IDC) and lobular (ILC) carcinomas are the common histological types of breast carcinoma which are difficult to distinguish when poorly differentiated. Discoidin domain receptor (DDR1) and Drosophila dishevelled protein (DVL1) were recently suggested to differentiate IDC from ILC.

    OBJECTIVES: To assess the expression of DDR1 and DVL1 and their association with histological type, grading and hormonal status of IDC and ILC.

    MATERIALS AND METHODS: This cross sectional study was conducted on IDC and ILC breast tumours. Tumours were immunohistochemically stained for (DDR1) and (DVL1) as well as estrogen receptor (ER), progesterone receptor (PR) and C-erbB2 receptor. Demographic data including age and ethnicity were obtained from patient records.

    RESULTS: A total of 51 cases (30 IDCs and 21 ILCs) were assessed. DDR1 and DVL1 expression was not significantly associated with histological type (p=0.57 and p=0.66 respectively). There was no association between DDR1 and DVL1 expression and tumour grade (p=0.32 and p=1.00 respectively), ER (p=0.62 and 0.50 respectively), PR (p=0.38 and p=0.63 respectively) and C-erbB2 expression (p=0.19 and p=0.33 respectively) in IDC. There was no association between DDR1 and DVL1 expression and tumour grade (p=0.52 and p=0.33 respectively), ER (p=0.06 and p=0.76 respectively), PR (p=0.61 and p=0.43 respectively) and C-erbB2 expression (p=0.58 and p=0.76 respectively) in ILC.

    CONCLUSIONS: This study revealed that DDR1 and DVL1 are present in both IDC and ILC regardless of the tumour differentiation. More studies are needed to assess the potential of these two proteins in distinguishing IDC from ILC in breast tumours.

    Matched MeSH terms: Receptor Protein-Tyrosine Kinases/metabolism*
  5. Tiash S, Chua MJ, Chowdhury EH
    Int J Oncol, 2016 Jun;48(6):2359-66.
    PMID: 27035628 DOI: 10.3892/ijo.2016.3452
    Treatment of breast cancer, the second leading cause of female deaths worldwide, with classical drugs is often accompanied by treatment failure and relapse of disease condition. Development of chemoresistance and drug toxicity compels compromising the drug concentration below the threshold level with the consequence of therapeutic inefficacy. Moreover, amplification and over-activation of proto-oncogenes in tumor cells make the treatment more challenging. The oncogene, ROS1 which is highly expressed in diverse types of cancers including breast carcinoma, functions as a survival protein aiding cancer progression. Thus we speculated that selective silencing of ROS1 gene by carrier-mediated delivery of siRNA might sensitize the cancer cells to the classical drugs at a relatively low concentration. In this investigation we showed that intracellular delivery of c-ROS1-targeting siRNA using pH-sensitive inorganic nanoparticles of carbonate apatite sensitizes mouse breast cancer cells (4T1) to doxorubicin, but not to cisplatin or paclitaxel, with the highest enhancement in chemosensitivity obtained at 40 nM of the drug concentration. Although intravenous administrations of ROS1-loaded nanoparticles reduced growth of the tumor, a further substantial effect on growth retardation was noted when the mice were treated with the siRNA- and Dox-bound particles, thus suggesting that silencing of ROS1 gene could sensitize the mouse breast cancer cells both in vitro and in vivo to doxorubicin as a result of synergistic effect of the gene knockdown and the drug action, eventually preventing activation of the survival pathway protein, AKT1. Our findings therefore provide valuable insight into the potential cross-talk between the pathways of ROS1 and doxorubicin for future development of effective therapeutics for breast cancer.
    Matched MeSH terms: Receptor Protein-Tyrosine Kinases/genetics*
  6. Omar E, Madhavan M, Othman NH
    Pathology, 2004 Apr;36(2):152-9.
    PMID: 15203751
    To investigate RET and p53 expression in local thyroid lesions, in order to shed light on the pathogenesis of papillary carcinoma and explain the high prevalence of this condition among the nodular hyperplasia (multi-nodular goitre) cases.
    Matched MeSH terms: Receptor Protein-Tyrosine Kinases/metabolism*
  7. Ankathil R, Ismail SM, Mohd Yunus N, Sulong S, Husin A, Abdullah AD, et al.
    Malays J Pathol, 2020 Dec;42(3):307-321.
    PMID: 33361712
    Chronic myeloid leukaemia (CML) provides an illustrative disease model for both molecular pathogenesis of cancer and rational drug therapy. Imatinib mesylate (IM), a BCR-ABL1 targeted tyrosine kinase inhibitor (TKI) drug, is the first line gold standard drug for CML treatment. Conventional cytogenetic analysis (CCA) can identify the standard and variant Philadelphia (Ph) chromosome, and any additional complex chromosome abnormalities at diagnosis as well as during treatment course. Fluorescence in situ hybridization (FISH) is especially important for cells of CML patients with inadequate or inferior quality metaphases or those with variant Ph translocations. CCA in conjunction with FISH can serve as powerful tools in all phases of CML including the diagnosis, prognosis, risk stratification and monitoring of cytogenetic responses to treatment. Molecular techniques such as reverse transcriptase-polymerase chain reaction (RT-PCR) is used for the detection of BCR-ABL1 transcripts at diagnosis whereas quantitative reverse transcriptase-polymerase chain reaction (qRTPCR) is used at the time of diagnosis as well as during TKI therapy for the quantitation of BCR-ABL1 transcripts to evaluate the molecular response and minimal residual disease (MRD). Despite the excellent treatment results obtained after the introduction of TKI drugs, especially Imatinib mesylate (IM), resistance to TKIs develops in approximately 35% - 40% of CML patients on TKI therapy. Since point mutations in BCR-ABL1 are a common cause of IM resistance, mutation analysis is important in IM resistant patients. Mutations are reliably detected by nested PCR amplification of the translocated ABL1 kinase domain followed by direct sequencing of the entire amplified kinase domain. The objective of this review is to highlight the importance of regular and timely CCA, FISH analysis and molecular testing in the diagnosis, prognosis, assessment of therapeutic efficacy, evaluation of MRD and in the detection of BCR-ABL1 kinase mutations which cause therapeutic resistance in adult CML patients.
    Matched MeSH terms: Protein-Tyrosine Kinases/antagonists & inhibitors
  8. Soria JC, Ohe Y, Vansteenkiste J, Reungwetwattana T, Chewaskulyong B, Lee KH, et al.
    N Engl J Med, 2018 01 11;378(2):113-125.
    PMID: 29151359 DOI: 10.1056/NEJMoa1713137
    BACKGROUND: Osimertinib is an oral, third-generation, irreversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) that selectively inhibits both EGFR-TKI-sensitizing and EGFR T790M resistance mutations. We compared osimertinib with standard EGFR-TKIs in patients with previously untreated, EGFR mutation-positive advanced non-small-cell lung cancer (NSCLC).

    METHODS: In this double-blind, phase 3 trial, we randomly assigned 556 patients with previously untreated, EGFR mutation-positive (exon 19 deletion or L858R) advanced NSCLC in a 1:1 ratio to receive either osimertinib (at a dose of 80 mg once daily) or a standard EGFR-TKI (gefitinib at a dose of 250 mg once daily or erlotinib at a dose of 150 mg once daily). The primary end point was investigator-assessed progression-free survival.

    RESULTS: The median progression-free survival was significantly longer with osimertinib than with standard EGFR-TKIs (18.9 months vs. 10.2 months; hazard ratio for disease progression or death, 0.46; 95% confidence interval [CI], 0.37 to 0.57; P<0.001). The objective response rate was similar in the two groups: 80% with osimertinib and 76% with standard EGFR-TKIs (odds ratio, 1.27; 95% CI, 0.85 to 1.90; P=0.24). The median duration of response was 17.2 months (95% CI, 13.8 to 22.0) with osimertinib versus 8.5 months (95% CI, 7.3 to 9.8) with standard EGFR-TKIs. Data on overall survival were immature at the interim analysis (25% maturity). The survival rate at 18 months was 83% (95% CI, 78 to 87) with osimertinib and 71% (95% CI, 65 to 76) with standard EGFR-TKIs (hazard ratio for death, 0.63; 95% CI, 0.45 to 0.88; P=0.007 [nonsignificant in the interim analysis]). Adverse events of grade 3 or higher were less frequent with osimertinib than with standard EGFR-TKIs (34% vs. 45%).

    CONCLUSIONS: Osimertinib showed efficacy superior to that of standard EGFR-TKIs in the first-line treatment of EGFR mutation-positive advanced NSCLC, with a similar safety profile and lower rates of serious adverse events. (Funded by AstraZeneca; FLAURA ClinicalTrials.gov number, NCT02296125 .).

    Matched MeSH terms: Protein-Tyrosine Kinases/antagonists & inhibitors
  9. Issac PK, Guru A, Chandrakumar SS, Lite C, Saraswathi NT, Arasu MV, et al.
    Mol Biol Rep, 2020 Sep;47(9):6727-6740.
    PMID: 32809102 DOI: 10.1007/s11033-020-05728-5
    Understanding the mechanism by which the exogenous biomolecule modulates the GLUT-4 signalling cascade along with the information on glucose metabolism is essential for finding solutions to increasing cases of diabetes and metabolic disease. This study aimed at investigating the effect of hamamelitannin on glycogen synthesis in an insulin resistance model using L6 myotubes. Glucose uptake was determined using 2-deoxy-D-[1-3H] glucose and glycogen synthesis were also estimated in L6 myotubes. The expression levels of key genes and proteins involved in the insulin-signaling pathway were determined using real-time PCR and western blot techniques. The cells treated with various concentrations of hamamelitannin (20 µM to 100 µM) for 24 h showed that, the exposure of hamamelitannin was not cytotoxic to L6 myotubes. Further the 2-deoxy-D-[1-3H] glucose uptake assay was carried out in the presence of wortmannin and Genistein inhibitor for studying the GLUT-4 dependent cell surface recruitment. Hamamelitannin exhibited anti-diabetic activity by displaying a significant increase in glucose uptake (125.1%) and glycogen storage (8.7 mM) in a dose-dependent manner. The optimum concentration evincing maximum activity was found to be 100 µm. In addition, the expression of key genes and proteins involved in the insulin signaling pathway was studied to be upregulated by hamamelitannin treatment. Western blot analysis confirmed the translocation of GLUT-4 protein from an intracellular pool to the plasma membrane. Therefore, it can be conceived that hamamelitannin exhibited an insulinomimetic effect by enhancing the glucose uptake and its further conversion into glycogen by regulating glucose metabolism.
    Matched MeSH terms: Protein-Tyrosine Kinases/genetics; Protein-Tyrosine Kinases/metabolism
  10. Sosroseno W, Barid I, Herminajeng E, Susilowati H
    Oral Microbiol. Immunol., 2002 Apr;17(2):72-8.
    PMID: 11929552
    The aim of this study was to determine whether Actinobacillus actinomycetemcomitans lipopolysaccharide (LPS-A. actinomycetemcomitans) could stimulate a murine macrophage cell line (RAW264.7 cells) to produce nitric oxide (NO). The cells were treated with LPS-A. actinomycetemcomitans or Escherichia coli LPS (LPS-Ec) for 24 h. The effects of N(G)-monomethyl-L-arginine (NMMA), polymyxin B and cytokines (IFN-gamma, TNF-alpha, IL-4 and IL-12) on the production of NO were also determined. The role of protein tyrosine kinase, protein kinase C and microtubulin organization on NO production were assessed by incubating RAW264.7 cells with genistein, bisindolylmaleide and colchicine prior to LPS-A. actinomycetemcomitans stimulation, respectively. NO levels from the culture supernatants were determined by the Griess reaction. The results showed that LPS-A. actinomycetemcomitans stimulated NO production by RAW264.7 cells in a dose-dependent manner, but was slightly less potent than LPS-Ec. NMMA and polymyxin B blocked the production of NO. IFN-gamma and IL-12 potentiated but IL-4 depressed NO production by LPS-A. actinomycetemcomitans-stimulated RAW264.7 cells. TNF-alpha had no effects on NO production. Genistein and bisindolylmalemaide, but not colchicine, reduced the production of NO in a dose-dependent mechanism. The results of the present study suggest that A. actinomycetemcomitans LPS, via the activation of protein tyrosine kinase and protein kinase C and the regulatory control of cytokines, stimulates NO production by murine macrophages.
    Matched MeSH terms: Protein-Tyrosine Kinases/antagonists & inhibitors
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links