Displaying publications 41 - 60 of 158 in total

Abstract:
Sort:
  1. Mohd Shafi'i MS, Juahir H
    Environ Monit Assess, 2024 Jun 21;196(7):640.
    PMID: 38904667 DOI: 10.1007/s10661-024-12787-9
    The presence of harmful substances in the atmosphere poses significant risks to the environment and public health. These pollutants can come from natural sources like dust and wildfires, or from human activities such as industrial, transportation, and agricultural practices. The objective of this study was to assess air quality on the East Coast of Peninsular Malaysia by analyzing historical data from the Department of Environment, Malaysia. Daily measurements of PM10, O3, SO2, NO2, and CO were collected from eight monitoring stations over 11 years (2011-2021) and analyzed using environmetric techniques. Hierarchical agglomerative cluster analysis (HACA) classified two stations as belonging to the high pollution cluster (HPC), three stations as part of the moderate pollution cluster (MPC), and three stations as the low pollution cluster (LPC). Discriminant analysis revealed a correct assignment rate of 90.50%, indicating that all five parameters were able to differentiate pollution levels with high significance (p 
    Matched MeSH terms: Particulate Matter/analysis
  2. Taylor-Blair HC, Siu ACW, Haysom-McDowell A, Kokkinis S, Bani Saeid A, Chellappan DK, et al.
    Sci Total Environ, 2024 Dec 01;954:176413.
    PMID: 39322084 DOI: 10.1016/j.scitotenv.2024.176413
    Inhalation of particulate matter (PM), one of the many components of air pollution, is associated with the development and exacerbation of chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD). COPD is one of the leading causes of global mortality and morbidity, with a paucity of therapeutic options and a significant contributor to global health expenditure. This review aims to provide a mechanistic understanding of the cellular and molecular pathways that lead to the development of COPD following chronic PM exposure. Our review describes how the inhalation of PM can lead to lung parenchymal destruction and cellular senescence due to chronic pulmonary inflammation and oxidative stress. Following inhalation of PM, significant increases in a range of pro-inflammatory cytokines, mediated by the nuclear factor kappa B pathway are reported. This review also highlights how the inhalation of PM can lead to deleterious chronic oxidative stress persisting in the lung post-exposure. Furthermore, our work summarises how PM inhalation can lead to airway remodelling, with increases in pro-fibrotic cytokines and collagen deposition, typical of COPD. This paper also accentuates the interconnection and possible synergism between the pathophysiological mechanisms leading to COPD. Our work emphasises the serious health consequences of PM exposure on respiratory health. Elucidation of the cellular and molecular mechanisms can provide insight into possible therapeutic options. Finally, this review should serve as a stark reminder of the need for genuine action on air pollution to decrease the associated health burden on our growing global population.
    Matched MeSH terms: Particulate Matter*
  3. Lung SC, Thi Hien T, Cambaliza MOL, Hlaing OMT, Oanh NTK, Latif MT, et al.
    PMID: 35162543 DOI: 10.3390/ijerph19031522
    The low-cost and easy-to-use nature of rapidly developed PM2.5 sensors provide an opportunity to bring breakthroughs in PM2.5 research to resource-limited countries in Southeast Asia (SEA). This review provides an evaluation of the currently available literature and identifies research priorities in applying low-cost sensors (LCS) in PM2.5 environmental and health research in SEA. The research priority is an outcome of a series of participatory workshops under the umbrella of the International Global Atmospheric Chemistry Project-Monsoon Asia and Oceania Networking Group (IGAC-MANGO). A literature review and research prioritization are conducted with a transdisciplinary perspective of providing useful scientific evidence in assisting authorities in formulating targeted strategies to reduce severe PM2.5 pollution and health risks in this region. The PM2.5 research gaps that could be filled by LCS application are identified in five categories: source evaluation, especially for the distinctive sources in the SEA countries; hot spot investigation; peak exposure assessment; exposure-health evaluation on acute health impacts; and short-term standards. The affordability of LCS, methodology transferability, international collaboration, and stakeholder engagement are keys to success in such transdisciplinary PM2.5 research. Unique contributions to the international science community and challenges with LCS application in PM2.5 research in SEA are also discussed.
    Matched MeSH terms: Particulate Matter/analysis
  4. Chaudhary V, Bhadola P, Kaushik A, Khalid M, Furukawa H, Khosla A
    Sci Rep, 2022 Jul 28;12(1):12949.
    PMID: 35902653 DOI: 10.1038/s41598-022-16781-4
    Amid ongoing devastation due to Serve-Acute-Respiratory-Coronavirus2 (SARS-CoV-2), the global spatial and temporal variation in the pandemic spread has strongly anticipated the requirement of designing area-specific preventive strategies based on geographic and meteorological state-of-affairs. Epidemiological and regression models have strongly projected particulate matter (PM) as leading environmental-risk factor for the COVID-19 outbreak. Understanding the role of secondary environmental-factors like ammonia (NH3) and relative humidity (RH), latency of missing data structuring, monotonous correlation remains obstacles to scheme conclusive outcomes. We mapped hotspots of airborne PM2.5, PM10, NH3, and RH concentrations, and COVID-19 cases and mortalities for January, 2021-July,2021 from combined data of 17 ground-monitoring stations across Delhi. Spearmen and Pearson coefficient correlation show strong association (p-value  0.60) and PM10 (r > 0.40), respectively. Interestingly, the COVID-19 spread shows significant dependence on RH (r > 0.5) and NH3 (r = 0.4), anticipating their potential role in SARS-CoV-2 outbreak. We found systematic lockdown as a successful measure in combatting SARS-CoV-2 outbreak. These outcomes strongly demonstrate regional and temporal differences in COVID-19 severity with environmental-risk factors. The study lays the groundwork for designing and implementing regulatory strategies, and proper urban and transportation planning based on area-specific environmental conditions to control future infectious public health emergencies.
    Matched MeSH terms: Particulate Matter/analysis
  5. Arora S, Sawaran Singh NS, Singh D, Rakesh Shrivastava R, Mathur T, Tiwari K, et al.
    Comput Intell Neurosci, 2022;2022:9755422.
    PMID: 36531923 DOI: 10.1155/2022/9755422
    In this study, the air quality index (AQI) of Indian cities of different tiers is predicted by using the vanilla recurrent neural network (RNN). AQI is used to measure the air quality of any region which is calculated on the basis of the concentration of ground-level ozone, particle pollution, carbon monoxide, and sulphur dioxide in air. Thus, the present air quality of an area is dependent on current weather conditions, vehicle traffic in that area, or anything that increases air pollution. Also, the current air quality is dependent on the climate conditions and industrialization in that area. Thus, the AQI is history-dependent. To capture this dependency, the memory property of fractional derivatives is exploited in this algorithm and the fractional gradient descent algorithm involving Caputo's derivative has been used in the backpropagation algorithm for training of the RNN. Due to the availability of a large amount of data and high computation support, deep neural networks are capable of giving state-of-the-art results in the time series prediction. But, in this study, the basic vanilla RNN has been chosen to check the effectiveness of fractional derivatives. The AQI and gases affecting AQI prediction results for different cities show that the proposed algorithm leads to higher accuracy. It has been observed that the results of the vanilla RNN with fractional derivatives are comparable to long short-term memory (LSTM).
    Matched MeSH terms: Particulate Matter/analysis
  6. Idris MS, Lee Siang H, Amin RM
    Data Brief, 2020 Feb;28:104982.
    PMID: 31890817 DOI: 10.1016/j.dib.2019.104982
    The biophysical data presented in this article were collected in the east coast of Peninsular Malaysia from May to November 2009. These monthly surface data were obtained from 32 stations along the coastal-offshore transect and were analyzed to understand the spatial and temporal distributions of biophysical parameters during different monsoon seasons. The data presented here include sea surface temperature (SST), sea surface salinity (SSS), Secchi disk depth (SDD), Chlorophyll-a (Chl-a), suspended particulate matter (SPM), mineral suspended solid (MSS) and chromophoric dissolved organic matter (CDOM).
    Matched MeSH terms: Particulate Matter
  7. Palanichamy N, Haw SC, S S, Murugan R, Govindasamy K
    F1000Res, 2022;11:406.
    PMID: 36531254 DOI: 10.12688/f1000research.73166.1
    Introduction Pollution of air in urban cities across the world has been steadily increasing in recent years. An increasing trend in particulate matter, PM 2.5, is a threat because it can lead to uncontrollable consequences like worsening of asthma and cardiovascular disease. The metric used to measure air quality is the air pollutant index (API). In Malaysia, machine learning (ML) techniques for PM 2.5 have received less attention as the concentration is on predicting other air pollutants. To fill the research gap, this study focuses on correctly predicting PM 2.5 concentrations in the smart cities of Malaysia by comparing supervised ML techniques, which helps to mitigate its adverse effects. Methods In this paper, ML models for forecasting PM 2.5 concentrations were investigated on Malaysian air quality data sets from 2017 to 2018. The dataset was preprocessed by data cleaning and a normalization process. Next, it was reduced into an informative dataset with location and time factors in the feature extraction process. The dataset was fed into three supervised ML classifiers, which include random forest (RF), artificial neural network (ANN) and long short-term memory (LSTM). Finally, their output was evaluated using the confusion matrix and compared to identify the best model for the accurate prediction of PM 2.5. Results Overall, the experimental result shows an accuracy of 97.7% was obtained by the RF model in comparison with the accuracy of ANN (61.14%) and LSTM (61.77%) in predicting PM 2.5. Discussion RF performed well when compared with ANN and LSTM for the given data with minimum features. RF was able to reach good accuracy as the model learns from the random samples by using decision tree with the maximum vote on the predictions.
    Matched MeSH terms: Particulate Matter
  8. Raaschou-Nielsen O, Beelen R, Wang M, Hoek G, Andersen ZJ, Hoffmann B, et al.
    Environ Int, 2016 Feb;87:66-73.
    PMID: 26641521 DOI: 10.1016/j.envint.2015.11.007
    Particulate matter (PM) air pollution is a human lung carcinogen; however, the components responsible have not been identified. We assessed the associations between PM components and lung cancer incidence.
    Matched MeSH terms: Particulate Matter
  9. AlThuwaynee OF, Kim SW, Najemaden MA, Aydda A, Balogun AL, Fayyadh MM, et al.
    Environ Sci Pollut Res Int, 2021 Aug;28(32):43544-43566.
    PMID: 33834339 DOI: 10.1007/s11356-021-13255-4
    This study investigates uncertainty in machine learning that can occur when there is significant variance in the prediction importance level of the independent variables, especially when the ROC fails to reflect the unbalanced effect of prediction variables. A variable drop-off loop function, based on the concept of early termination for reduction of model capacity, regularization, and generalization control, was tested. A susceptibility index for airborne particulate matter of less than 10 μm diameter (PM10) was modeled using monthly maximum values and spectral bands and indices from Landsat 8 imagery, and Open Street Maps were used to prepare a range of independent variables. Probability and classification index maps were prepared using extreme-gradient boosting (XGBOOST) and random forest (RF) algorithms. These were assessed against utility criteria such as a confusion matrix of overall accuracy, quantity of variables, processing delay, degree of overfitting, importance distribution, and area under the receiver operating characteristic curve (ROC).
    Matched MeSH terms: Particulate Matter
  10. Ngu LH, Law PL, Wong KK, Yusof AA
    Water Sci Technol, 2010;62(5):1129-35.
    PMID: 20818055 DOI: 10.2166/wst.2010.407
    This research investigated the effects of co- and counter-current flow patterns on oil-water-solid separation efficiencies of a circular separator with inclined coalescence mediums. Oil-water-solid separations were tested at different influent concentrations and flowrates. Removal efficiencies increased as influent flowrate decreased, and their correlationship can be represented by power equations. These equations were used to predict the required flowrate, Q(ss50), for a given influent suspended solids concentration C(iss) to achieve the desired effluent suspended solids concentration, C(ess) of 50 mg/L, to meet environmental discharge requirements. The circular separator with counter-current flow was found to attend removal efficiencies relatively higher as compared to the co-current flow. As compared with co-current flow, counter-current flow Q(ss50) was approximately 1.65 times higher than co-current flow. It also recorded 13.16% higher oil removal at influent oil concentration, C(io) of 100 mg/L, and approximately 5.89% higher TSS removal at all influent flowrates. Counter-current flow's better removal performances were due to its higher coalescing area and constant interval between coalescence plate layers.
    Matched MeSH terms: Particulate Matter/chemistry*
  11. Yong NK, Awang N
    Environ Monit Assess, 2019 Jan 11;191(2):64.
    PMID: 30635772 DOI: 10.1007/s10661-019-7209-6
    This study presents the use of a wavelet-based time series model to forecast the daily average particulate matter with an aerodynamic diameter of less than 10 μm (PM10) in Peninsular Malaysia. The highlight of this study is the use of a discrete wavelet transform (DWT) in order to improve the forecast accuracy. The DWT was applied to convert the highly variable PM10 series into more stable approximations and details sub-series, and the ARIMA-GARCH time series models were developed for each sub-series. Two different forecast periods, one was during normal days, while the other was during haze episodes, were designed to justify the usefulness of DWT. The models' performance was evaluated by four indices, namely root mean square error, mean absolute percentage error, probability of detection and false alarm rate. The results showed that the model incorporated with DWT yielded more accurate forecasts than the conventional method without DWT for both the forecast periods, and the improvement was more prominent for the period during the haze episodes.
    Matched MeSH terms: Particulate Matter/analysis*
  12. Ali SM, Malik F, Anjum MS, Siddiqui GF, Anwar MN, Lam SS, et al.
    Environ Res, 2021 02;193:110421.
    PMID: 33160973 DOI: 10.1016/j.envres.2020.110421
    A pneumonia-like disease of unknown origin caused a catastrophe in Wuhan city, China. This disease spread to 215 countries affecting a wide range of people. World health organization (WHO) called it a pandemic and it was officially named as Severe Acute Respiratory Syndrome Corona virus 2 (SARS CoV-2), also known as Corona virus disease (COVID-19). This pandemic compelled countries to enforce a socio-economic lockdown to prevent its widespread. This paper focuses on how the particulate matter pollution was reduced during the lockdown period (23 March to April 15, 2020) as compared to before lockdown. Both ground-based and satellite observations were used to identify the improvement in air quality of Pakistan with primary focus on four major cities of Lahore, Islamabad, Karachi and Peshawar. Both datasets have shown a substantial reduction in PM2.5 pollution levels (ranging from 13% to 33% in case of satellite observations, while 23%-58% in ground-based observations) across Pakistan. Result shows a higher rate of COVID-19 spread in major cities of Pakistan with poor air quality conditions. Yet more research is needed in order to establish linkage between COVID-19 spread and air pollution. However, it can be partially attributed to both higher rate of population density and frequent exposure of population to enhanced levels of PM2.5 concentrations before lockdown period.
    Matched MeSH terms: Particulate Matter/analysis
  13. Althuwaynee OF, Pokharel B, Aydda A, Balogun AL, Kim SW, Park HJ
    J Expo Sci Environ Epidemiol, 2021 07;31(4):709-726.
    PMID: 33159165 DOI: 10.1038/s41370-020-00271-8
    Accurate identification of distant, large, and frequent sources of emission in cities is a complex procedure due to the presence of large-sized pollutants and the existence of many land use types. This study aims to simplify and optimize the visualization mechanism of long time-series of air pollution data, particularly for urban areas, which is naturally correlated in time and spatially complicated to analyze. Also, we elaborate different sources of pollution that were hitherto undetectable using ordinary plot models by leveraging recent advances in ensemble statistical approaches. The high performing conditional bivariate probability function (CBPF) and time-series signature were integrated within the R programming environment to facilitate the study's analysis. Hourly air pollution data for the period between 2007 to 2016 is collected using four air quality stations, (ca0016, ca0058, ca0054, and ca0025), situated in highly urbanized locations that are characterized by complex land use and high pollution emitting activities. A conditional bivariate probability function (CBPF) was used to analyze the data, utilizing pollutant concentration values such as Sulfur dioxide (SO2), Nitrogen oxides (NO2), Carbon monoxide (CO) and Particulate Matter (PM10) as a third variable plotted on the radial axis, with wind direction and wind speed variables. Generalized linear model (GLM) and sensitivity analysis are applied to verify and visualize the relationship between Air Pollution Index (API) of PM10 and other significant pollutants of GML outputs based on quantile values. To address potential future challenges, we forecast 3 months PM10 values using a Time Series Signature statistical algorithm with time functions and validated the outcome in the 4 stations. Analysis of results reveals that sources emitting PM10 have similar activities producing other pollutants (SO2, CO, and NO2). Therefore, these pollutants can be detected by cross selection between the pollution sources in the affected city. The directional results of CBPF plot indicate that ca0058 and ca0054 enable easier detection of pollutants' sources in comparison to ca0016 and ca0025 due to being located on the edge of industrial areas. This study's CBPF technique and time series signature analysis' outcomes are promising, successfully elaborating different sources of pollution that were hitherto undetectable using ordinary plot models and thus contribute to existing air quality assessment and enhancement mechanisms.
    Matched MeSH terms: Particulate Matter/analysis
  14. Mohd Isa KN, Jalaludin J, Mohd Elias S, Mohamed N, Hashim JH, Hashim Z
    PMID: 35457448 DOI: 10.3390/ijerph19084580
    Numerous epidemiological studies have evaluated the association of fractional exhaled nitric oxide (FeNO) and indoor air pollutants, but limited information available of the risks between schools located in suburban and urban areas. We therefore investigated the association of FeNO levels with indoor particulate matter (PM10 and PM2.5), and nitrogen dioxide (NO2) exposure in suburban and urban school areas. A comparative cross-sectional study was undertaken among secondary school students in eight schools located in the suburban and urban areas in the district of Hulu Langat, Selangor, Malaysia. A total of 470 school children (aged 14 years old) were randomly selected, their FeNO levels were measured, and allergic skin prick tests were conducted. The PM2.5, PM10, NO2, and carbon dioxide (CO2), temperature, and relative humidity were measured inside the classrooms. We found that the median of FeNO in the school children from urban areas (22.0 ppb, IQR = 32.0) were slightly higher as compared to the suburban group (19.5 ppb, IQR = 24.0). After adjustment of potential confounders, the two-level hierarchical multiple logistic regression models showed that the concentrations of PM2.5 were significantly associated with elevated of FeNO (>20 ppb) in school children from suburban (OR = 1.42, 95% CI = 1.17−1.72) and urban (OR = 1.30, 95% CI = 1.10−1.91) areas. Despite the concentrations of NO2 being below the local and international recommendation guidelines, NO2 was found to be significantly associated with the elevated FeNO levels among school children from suburban areas (OR = 1.11, 95% CI = 1.06−1.17). The findings of this study support the evidence of indoor pollutants in the school micro-environment associated with FeNO levels among school children from suburban and urban areas.
    Matched MeSH terms: Particulate Matter/analysis
  15. Khan MF, Latif MT, Amil N, Juneng L, Mohamad N, Nadzir MS, et al.
    Environ Sci Pollut Res Int, 2015 Sep;22(17):13111-26.
    PMID: 25925145 DOI: 10.1007/s11356-015-4541-4
    Principal component analysis (PCA) and correlation have been used to study the variability of particle mass and particle number concentrations (PNC) in a tropical semi-urban environment. PNC and mass concentration (diameter in the range of 0.25->32.0 μm) have been measured from 1 February to 26 February 2013 using an in situ Grimm aerosol sampler. We found that the 24-h average total suspended particulates (TSP), particulate matter ≤10 μm (PM10), particulate matter ≤2.5 μm (PM2.5) and particulate matter ≤1 μm (PM1) were 14.37 ± 4.43, 14.11 ± 4.39, 12.53 ± 4.13 and 10.53 ± 3.98 μg m(-3), respectively. PNC in the accumulation mode (<500 nm) was the most abundant (at about 99 %). Five principal components (PCs) resulted from the PCA analysis where PC1 (43.8 % variance) predominates with PNC in the fine and sub-microme tre range. PC2, PC3, PC4 and PC5 explain 16.5, 12.4, 6.0 and 5.6 % of the variance to address the coarse, coarser, accumulation and giant fraction of PNC, respectively. Our particle distribution results show good agreement with the moderate resolution imaging spectroradiometer (MODIS) distribution.
    Matched MeSH terms: Particulate Matter/analysis*
  16. Mazeli MI, Pahrol MA, Abdul Shakor AS, Kanniah KD, Omar MA
    Sci Total Environ, 2023 May 20;874:162130.
    PMID: 36804978 DOI: 10.1016/j.scitotenv.2023.162130
    In 2016, the World Health Organization (WHO) estimated that approximately 4.2 million premature deaths worldwide were attributable to exposure to particulate matter 2.5 μm (PM2.5). This study assessed the environmental burden of disease attributable to PM2.5 at the national level in Malaysia. We estimated the population-weighted exposure level (PWEL) of PM10 concentrations in Malaysia for 2000, 2008, and 2013 using aerosol optical density (AOD) data from publicly available remote sensing satellite data (MODIS Terra). The PWEL was then converted to PM2.5 using Malaysia's WHO ambient air conversion factor. We used AirQ+ 2.0 software to calculate all-cause (natural), ischemic heart disease (IHD), stroke, chronic obstructive pulmonary disease (COPD), lung cancer (LC), and acute lower respiratory infection (ALRI) excess deaths from the National Burden of Disease data for 2000, 2008 and 2013. The average PWELs for annual PM2.5 for 2000, 2008, and 2013 were 22 μg m-3, 18 μg m-3 and 24 μg m-3, respectively. Using the WHO 2005 Air Quality Guideline cut-off point of PM2.5 of 10 μg m-3, the estimated excess deaths for 2000, 2008, and 2013 from all-cause (natural) mortality were between 5893 and 9781 (95 % CI: 3347-12,791), COPD was between 164 and 957 (95 % CI: 95-1411), lung cancer was between 109 and 307 (95 % CI: 63-437), IHD was between 3 and 163 deaths, according to age groups (95 % CI: 2-394) and stroke was between 6 and 155 deaths, according to age groups (95 % CI: 3-261). An increase in estimated health endpoints was associated with increased estimated PWEL PM2.5 for 2013 compared to 2000 and 2008. Adhering the ambient PM2.5 level to the Malaysian Air Quality Standard IT-2 would reduce the national health endpoints mortality.
    Matched MeSH terms: Particulate Matter/analysis
  17. Otuyo MK, Nadzir MSM, Latif MT, Din SAM
    Environ Sci Pollut Res Int, 2023 Dec;30(58):121306-121337.
    PMID: 37993649 DOI: 10.1007/s11356-023-30923-9
    This comprehensive paper conducts an in-depth review of personal exposure and air pollutant levels within the microenvironments of Asian city transportation. Our methodology involved a systematic analysis of an extensive body of literature from diverse sources, encompassing a substantial quantity of studies conducted across multiple Asian cities. The investigation scrutinizes exposure to various pollutants, including particulate matters (PM10, PM2.5, and PM1), carbon dioxide (CO2), formaldehyde (CH2O), and total volatile organic compounds (TVOC), during transportation modes such as car travel, bus commuting, walking, and train rides. Notably, our review reveals a predominant focus on PM2.5, followed by PM10, PM1, CO2, and TVOC, with limited attention given to CH2O exposure. Across the spectrum of Asian cities and transportation modes, exposure concentrations exhibited considerable variability, a phenomenon attributed to a multitude of factors. Primary sources of exposure encompass motor vehicle emissions, traffic dynamics, road dust, and open bus doors. Furthermore, our findings illuminate the influence of external environments, particularly in proximity to train stations, on pollutant levels inside trains. Crucial factors affecting exposure encompass ventilation conditions, travel-specific variables, seat locations, vehicle types, and meteorological influences. The culmination of this rigorous review underscores the need for standardized measurements, enhanced ventilation systems, air filtration mechanisms, the adoption of clean energy sources, and comprehensive public education initiatives aimed at reducing pollutant exposure within city transportation microenvironments. Importantly, our study contributes to the growing body of knowledge surrounding this subject, offering valuable insights for policymakers and researchers dedicated to advancing air quality standards and safeguarding public health.
    Matched MeSH terms: Particulate Matter/analysis
  18. Tan H, Othman MHD, Kek HY, Chong WT, Nyakuma BB, Wahab RA, et al.
    Environ Sci Pollut Res Int, 2024 Jul;31(32):44463-44488.
    PMID: 38943001 DOI: 10.1007/s11356-024-34075-2
    Indoor air quality (IAQ) in the built environment is significantly influenced by particulate matter, volatile organic compounds, and air temperature. Recently, the Internet of Things (IoT) has been integrated to improve IAQ and safeguard human health, comfort, and productivity. This review seeks to highlight the potential of IoT integration for monitoring IAQ. Additionally, the paper details progress by researchers in developing IoT/mobile applications for IAQ monitoring, and their transformative impact in smart building, healthcare, predictive maintenance, and real-time data analysis systems. It also outlines the persistent challenges (e.g., data privacy, security, and user acceptability), hampering effective IoT implementation for IAQ monitoring. Lastly, the global developments and research landscape on IoT for IAQ monitoring were examined through bibliometric analysis (BA) of 106 publications indexed in Web of Science from 2015 to 2022. BA revealed the most significant contributing countries are India and Portugal, while the top productive institutions and researchers are Instituto Politecnico da Guarda (10.37% of TP) and Marques Goncalo (15.09% of TP), respectively. Keyword analysis revealed four major research themes: IoT, pollution, monitoring, and health. Overall, this paper provides significant insights for identifying prospective collaborators, benchmark publications, strategic funding, and institutions for future IoT-IAQ researchers.
    Matched MeSH terms: Particulate Matter/analysis
  19. Nasar-U-Minallah M, Jabbar M, Zia S, Perveen N
    Environ Monit Assess, 2024 Aug 30;196(9):865.
    PMID: 39212804 DOI: 10.1007/s10661-024-12925-3
    Urban environment and air quality are changing primarily due to land use land cover (LULC) changes, economic activity, and urbanization. Air pollution has been increasingly acknowledged as a major issue for cities due to its extensive effects on health and well-being. As the second most populous city in the country, Lahore faces alarming levels of air pollutants, which induced this study to focus on the pervasive issue of air pollution in Lahore. For this, the study collected air pollutants data from the Environmental Protection Department of Punjab and analyzed them using the ARIMA model. In the research results, both the observed data and predictive models uncovered concerning trends in pollutant concentrations, ultimately portraying a concerning picture for air quality management. Carbon monoxide (CO) levels show a consistent rise, surpassing Pakistan's environmental standards by 2025. Similarly, nitrogen dioxide (NO2) concentrations escalate, exceeding prescribed standards. Ground-level ozone (O3) also demonstrates a substantial increase, surpassing standards by 2025. Both PM2.5 and PM10 exhibit marked upward trends, projected to exceed recommended limits, particularly PM10 throughout the study year. The Air Quality Index exhibits an observable upward trend, fluctuating between 70 and 442 from 2015 to 2020. Similarly, a positive correlation was found between population growth and land use conversion into residential areas. Projections suggest a continuous increase, potentially hitting a severe level of 500 during winter by 2025. These findings point to an impending air pollution crisis, demanding urgent action to address the hazardous situation in the city. The study recommends that urban air pollution should be reduced, and the negative health effects of air pollution should be minimized using vegetation barriers, screens, and greening initiatives. Strict regulations and monitoring initiatives need to be put in place in big cities to monitor pollution and vegetation.
    Matched MeSH terms: Particulate Matter/analysis
  20. Goh CC, Kamarudin LM, Zakaria A, Nishizaki H, Ramli N, Mao X, et al.
    Sensors (Basel), 2021 Jul 21;21(15).
    PMID: 34372192 DOI: 10.3390/s21154956
    This paper presents the development of a real-time cloud-based in-vehicle air quality monitoring system that enables the prediction of the current and future cabin air quality. The designed system provides predictive analytics using machine learning algorithms that can measure the drivers' drowsiness and fatigue based on the air quality presented in the cabin car. It consists of five sensors that measure the level of CO2, particulate matter, vehicle speed, temperature, and humidity. Data from these sensors were collected in real-time from the vehicle cabin and stored in the cloud database. A predictive model using multilayer perceptron, support vector regression, and linear regression was developed to analyze the data and predict the future condition of in-vehicle air quality. The performance of these models was evaluated using the Root Mean Square Error, Mean Squared Error, Mean Absolute Error, and coefficient of determination (R2). The results showed that the support vector regression achieved excellent performance with the highest linearity between the predicted and actual data with an R2 of 0.9981.
    Matched MeSH terms: Particulate Matter
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links