Displaying publications 41 - 60 of 375 in total

Abstract:
Sort:
  1. Alamoodi AH, Zughoul O, David D, Garfan S, Pamucar D, Albahri OS, et al.
    J Med Syst, 2024 Aug 31;48(1):81.
    PMID: 39214943 DOI: 10.1007/s10916-024-02090-y
    Artificial intelligence (AI) has become a crucial element of modern technology, especially in the healthcare sector, which is apparent given the continuous development of large language models (LLMs), which are utilized in various domains, including medical beings. However, when it comes to using these LLMs for the medical domain, there's a need for an evaluation platform to determine their suitability and drive future development efforts. Towards that end, this study aims to address this concern by developing a comprehensive Multi-Criteria Decision Making (MCDM) approach that is specifically designed to evaluate medical LLMs. The success of AI, particularly LLMs, in the healthcare domain, depends on their efficacy, safety, and ethical compliance. Therefore, it is essential to have a robust evaluation framework for their integration into medical contexts. This study proposes using the Fuzzy-Weighted Zero-InConsistency (FWZIC) method extended to p, q-quasirung orthopair fuzzy set (p, q-QROFS) for weighing evaluation criteria. This extension enables the handling of uncertainties inherent in medical decision-making processes. The approach accommodates the imprecise and multifaceted nature of real-world medical data and criteria by incorporating fuzzy logic principles. The MultiAtributive Ideal-Real Comparative Analysis (MAIRCA) method is employed for the assessment of medical LLMs utilized in the case study of this research. The results of this research revealed that "Medical Relation Extraction" criteria with its sub-levels had more importance with (0.504) than "Clinical Concept Extraction" with (0.495). For the LLMs evaluated, out of 6 alternatives, ( A 4 ) "GatorTron S 10B" had the 1st rank as compared to ( A 1 ) "GatorTron 90B" had the 6th rank. The implications of this study extend beyond academic discourse, directly impacting healthcare practices and patient outcomes. The proposed framework can help healthcare professionals make more informed decisions regarding the adoption and utilization of LLMs in medical settings.
    Matched MeSH terms: Artificial Intelligence*
  2. Ali AM, Ghaleb FA, Al-Rimy BAS, Alsolami FJ, Khan AI
    Sensors (Basel), 2022 Sep 15;22(18).
    PMID: 36146319 DOI: 10.3390/s22186970
    Recently, fake news has been widely spread through the Internet due to the increased use of social media for communication. Fake news has become a significant concern due to its harmful impact on individual attitudes and the community's behavior. Researchers and social media service providers have commonly utilized artificial intelligence techniques in the recent few years to rein in fake news propagation. However, fake news detection is challenging due to the use of political language and the high linguistic similarities between real and fake news. In addition, most news sentences are short, therefore finding valuable representative features that machine learning classifiers can use to distinguish between fake and authentic news is difficult because both false and legitimate news have comparable language traits. Existing fake news solutions suffer from low detection performance due to improper representation and model design. This study aims at improving the detection accuracy by proposing a deep ensemble fake news detection model using the sequential deep learning technique. The proposed model was constructed in three phases. In the first phase, features were extracted from news contents, preprocessed using natural language processing techniques, enriched using n-gram, and represented using the term frequency-inverse term frequency technique. In the second phase, an ensemble model based on deep learning was constructed as follows. Multiple binary classifiers were trained using sequential deep learning networks to extract the representative hidden features that could accurately classify news types. In the third phase, a multi-class classifier was constructed based on multilayer perceptron (MLP) and trained using the features extracted from the aggregated outputs of the deep learning-based binary classifiers for final classification. The two popular and well-known datasets (LIAR and ISOT) were used with different classifiers to benchmark the proposed model. Compared with the state-of-the-art models, which use deep contextualized representation with convolutional neural network (CNN), the proposed model shows significant improvements (2.41%) in the overall performance in terms of the F1score for the LIAR dataset, which is more challenging than other datasets. Meanwhile, the proposed model achieves 100% accuracy with ISOT. The study demonstrates that traditional features extracted from news content with proper model design outperform the existing models that were constructed based on text embedding techniques.
    Matched MeSH terms: Artificial Intelligence*
  3. Cheng X, Chaw JK, Goh KM, Ting TT, Sahrani S, Ahmad MN, et al.
    Sensors (Basel), 2022 Aug 23;22(17).
    PMID: 36080780 DOI: 10.3390/s22176321
    The widespread adoption of cyber-physical systems and other cutting-edge digital technology in manufacturing industry production facilities may motivate stakeholders to embrace the idea of Industry 4.0. Some industrial companies already have different sensors installed on their machines; however, without proper analysis, the data collected is not useful. This systematic review's main goal is to synthesize the existing evidence on the application of predictive maintenance (PdM) with visual aids and to identify the key knowledge gaps in areas including utilities, power generation, industry, and energy consumption. After a thorough search and evaluation for relevancy, 37 documents were identified. Moreover, we identified the visual analytics of PdM, including anomaly detection, planning/scheduling, exploratory data analysis (EDA), and explainable artificial intelligence (XAI). The findings revealed that anomaly detection was a major domain in PdM-related works. We conclude that most of the literature lacks depth in terms of an overall framework that combines data-driven and knowledge-driven techniques of PdM in the manufacturing industry. Some works that utilized both techniques indicated promising results, but there is insufficient research on involving maintenance personnel's feedback in the latter stage of PdM architecture. Thus, there are still pertinent issues that need to be investigated, and limitations that need to be overcome before PdM is deployed with minimal human involvement.
    Matched MeSH terms: Artificial Intelligence*
  4. Wee NK, Git KA, Lee WJ, Raval G, Pattokhov A, Ho ELM, et al.
    Korean J Radiol, 2024 Jul;25(7):603-612.
    PMID: 38942454 DOI: 10.3348/kjr.2024.0419
    Artificial intelligence (AI) is rapidly gaining recognition in the radiology domain as a greater number of radiologists are becoming AI-literate. However, the adoption and implementation of AI solutions in clinical settings have been slow, with points of contention. A group of AI users comprising mainly clinical radiologists across various Asian countries, including India, Japan, Malaysia, Singapore, Taiwan, Thailand, and Uzbekistan, formed the working group. This study aimed to draft position statements regarding the application and clinical deployment of AI in radiology. The primary aim is to raise awareness among the general public, promote professional interest and discussion, clarify ethical considerations when implementing AI technology, and engage the radiology profession in the ever-changing clinical practice. These position statements highlight pertinent issues that need to be addressed between care providers and care recipients. More importantly, this will help legalize the use of non-human instruments in clinical deployment without compromising ethical considerations, decision-making precision, and clinical professional standards. We base our study on four main principles of medical care-respect for patient autonomy, beneficence, non-maleficence, and justice.
    Matched MeSH terms: Artificial Intelligence*
  5. Wagner NN
    Br J Med Educ, 1970 Jun;4(2):109-13.
    PMID: 5485765
    Matched MeSH terms: Intelligence*; Intelligence Tests
  6. Jamei M, Ahmadianfar I, Karbasi M, Jawad AH, Farooque AA, Yaseen ZM
    J Environ Manage, 2021 Dec 15;300:113774.
    PMID: 34560461 DOI: 10.1016/j.jenvman.2021.113774
    The concentration of soluble salts in surface water and rivers such as sodium, sulfate, chloride, magnesium ions, etc., plays an important role in the water salinity. Therefore, accurate determination of the distribution pattern of these ions can improve better management of drinking water resources and human health. The main goal of this research is to establish two novel wavelet-complementary intelligence paradigms so-called wavelet least square support vector machine coupled with improved simulated annealing (W-LSSVM-ISA) and the wavelet extended Kalman filter integrated with artificial neural network (W-EKF- ANN) for accurate forecasting of the monthly), magnesium (Mg+2), and sulfate (SO4-2) indices at Maroon River, in Southwest of Iran. The monthly River flow (Q), electrical conductivity (EC), Mg+2, and SO4-2 data recorded at Tange-Takab station for the period 1980-2016. Some preprocessing procedures consisting of specifying the number of lag times and decomposition of the existing original signals into multi-resolution sub-series using three mother wavelets were performed to develop predictive models. In addition, the best subset regression analysis was designed to separately assess the best selective combinations for Mg+2 and SO4-2. The statistical metrics and authoritative validation approaches showed that both complementary paradigms yielded promising accuracy compared with standalone artificial intelligence (AI) models. Furthermore, the results demonstrated that W-LSSVM-ISA-C1 (correlation coefficient (R) = 0.9521, root mean square error (RMSE) = 0.2637 mg/l, and Kling-Gupta efficiency (KGE) = 0.9361) and W-LSSVM-ISA-C4 (R = 0.9673, RMSE = 0.5534 mg/l and KGE = 0.9437), using Dmey mother that outperformed the W-EKF-ANN for predicting Mg+2 and SO4-2, respectively.
    Matched MeSH terms: Artificial Intelligence*; Intelligence
  7. Al Mashhadany Y, Alsanad HR, Al-Askari MA, Algburi S, Taha BA
    Environ Monit Assess, 2024 Apr 09;196(5):438.
    PMID: 38592580 DOI: 10.1007/s10661-024-12606-1
    Advanced sensor technology, especially those that incorporate artificial intelligence (AI), has been recognized as increasingly important in various contemporary applications, including navigation, automation, water under imaging, environmental monitoring, and robotics. Data-driven decision-making and higher efficiency have enabled more excellent infrastructure thanks to integrating AI with sensors. The agricultural sector is one such area that has seen significant promise from this technology using the Internet of Things (IoT) capabilities. This paper describes an intelligent system for monitoring and analyzing agricultural environmental conditions, including weather, soil, and crop health, that uses internet-connected sensors and equipment. This work makes two significant contributions. It first makes it possible to use sensors linked to the IoT to accurately monitor the environment remotely. Gathering and analyzing data over time may give us valuable insights into daily fluctuations and long-term patterns. The second benefit of AI integration is the remote control; it provides for essential activities like irrigation, pest management, and disease detection. The technology can optimize water usage by tracking plant development and health and adjusting watering schedules accordingly. Intelligent Control Systems (Matlab/Simulink Ver. 2022b) use a hybrid controller that combines fuzzy logic with standard PID control to get high-efficiency performance from water pumps. In addition to monitoring crops, smart cameras allow farmers to make real-time adjustments based on soil moisture and plant needs. Potentially revolutionizing contemporary agriculture, this revolutionary approach might boost production, sustainability, and efficiency.
    Matched MeSH terms: Artificial Intelligence*; Intelligence
  8. Mohd Faizal AS, Thevarajah TM, Khor SM, Chang SW
    Comput Methods Programs Biomed, 2021 Aug;207:106190.
    PMID: 34077865 DOI: 10.1016/j.cmpb.2021.106190
    Cardiovascular disease (CVD) is the leading cause of death worldwide and is a global health issue. Traditionally, statistical models are used commonly in the risk prediction and assessment of CVD. However, the adoption of artificial intelligent (AI) approach is rapidly taking hold in the current era of technology to evaluate patient risks and predict the outcome of CVD. In this review, we outline various conventional risk scores and prediction models and do a comparison with the AI approach. The strengths and limitations of both conventional and AI approaches are discussed. Besides that, biomarker discovery related to CVD are also elucidated as the biomarkers can be used in the risk stratification as well as early detection of the disease. Moreover, problems and challenges involved in current CVD studies are explored. Lastly, future prospects of CVD risk prediction and assessment in the multi-modality of big data integrative approaches are proposed.
    Matched MeSH terms: Artificial Intelligence
  9. Rahman MM, Khatun F, Uzzaman A, Sami SI, Bhuiyan MA, Kiong TS
    Int J Health Serv, 2021 10;51(4):446-461.
    PMID: 33999732 DOI: 10.1177/00207314211017469
    The novel coronavirus disease (COVID-19) has spread over 219 countries of the globe as a pandemic, creating alarming impacts on health care, socioeconomic environments, and international relationships. The principal objective of the study is to provide the current technological aspects of artificial intelligence (AI) and other relevant technologies and their implications for confronting COVID-19 and preventing the pandemic's dreadful effects. This article presents AI approaches that have significant contributions in the fields of health care, then highlights and categorizes their applications in confronting COVID-19, such as detection and diagnosis, data analysis and treatment procedures, research and drug development, social control and services, and the prediction of outbreaks. The study addresses the link between the technologies and the epidemics as well as the potential impacts of technology in health care with the introduction of machine learning and natural language processing tools. It is expected that this comprehensive study will support researchers in modeling health care systems and drive further studies in advanced technologies. Finally, we propose future directions in research and conclude that persuasive AI strategies, probabilistic models, and supervised learning are required to tackle future pandemic challenges.
    Matched MeSH terms: Artificial Intelligence
  10. Silalahi DD, Midi H, Arasan J, Mustafa MS, Caliman JP
    Heliyon, 2020 Jan;6(1):e03176.
    PMID: 32042959 DOI: 10.1016/j.heliyon.2020.e03176
    In practice, the collected spectra are very often composes of complex overtone and many overlapping peaks which may lead to misinterpretation because of its significant nonlinear characteristics. Using linear solution might not be appropriate. In addition, with a high-dimension of dataset due to large number of observations and data points the classical multiple regressions will neglect to fit. These complexities commonly will impact to multicollinearity problem, furthermore the risk of contamination of multiple outliers and high leverage points also increases. To address these problems, a new method called Kernel Partial Diagnostic Robust Potential (KPDRGP) is introduced. The method allows the nonlinear solution which maps nonlinearly the original input

    X

    matrix into higher dimensional feature mapping with corresponds to the Reproducing Kernel Hilbert Spaces (RKHS). In dimensional reduction, the method replaces the dot products calculation of elements in the mapped data to a nonlinear function in the original input space. To prevent the contamination of the multiple outlier and high leverage points the robust procedure using Diagnostic Robust Generalized Potentials (DRGP) algorithm was used. The results verified that using the simulation and real data, the proposed KPDRGP method was superior to the methods in the class of non-kernel and some other robust methods with kernel solution.
    Matched MeSH terms: Artificial Intelligence
  11. Hermawan A, Amrillah T, Riapanitra A, Ong WJ, Yin S
    Adv Healthc Mater, 2021 10;10(20):e2100970.
    PMID: 34318999 DOI: 10.1002/adhm.202100970
    A fully integrated, flexible, and functional sensing device for exhaled breath analysis drastically transforms conventional medical diagnosis to non-invasive, low-cost, real-time, and personalized health care. 2D materials based on MXenes offer multiple advantages for accurately detecting various breath biomarkers compared to conventional semiconducting oxides. High surface sensitivity, large surface-to-weight ratio, room temperature detection, and easy-to-assemble structures are vital parameters for such sensing devices in which MXenes have demonstrated all these properties both experimentally and theoretically. So far, MXenes-based flexible sensor is successfully fabricated at a lab-scale and is predicted to be translated into clinical practice within the next few years. This review presents a potential application of MXenes as emerging materials for flexible and wearable sensor devices. The biomarkers from exhaled breath are described first, with emphasis on metabolic processes and diseases indicated by abnormal biomarkers. Then, biomarkers sensing performances provided by MXenes families and the enhancement strategies are discussed. The method of fabrications toward MXenes integration into various flexible substrates is summarized. Finally, the fundamental challenges and prospects, including portable integration with Internet-of-Thing (IoT) and Artificial Intelligence (AI), are addressed to realize marketization.
    Matched MeSH terms: Artificial Intelligence
  12. Nagaki K, Furuta T, Yamaji N, Kuniyoshi D, Ishihara M, Kishima Y, et al.
    Chromosome Res, 2021 12;29(3-4):361-371.
    PMID: 34648121 DOI: 10.1007/s10577-021-09676-z
    Observing chromosomes is a time-consuming and labor-intensive process, and chromosomes have been analyzed manually for many years. In the last decade, automated acquisition systems for microscopic images have advanced dramatically due to advances in their controlling computer systems, and nowadays, it is possible to automatically acquire sets of tiling-images consisting of large number, more than 1000, of images from large areas of specimens. However, there has been no simple and inexpensive system to efficiently select images containing mitotic cells among these images. In this paper, a classification system of chromosomal images by deep learning artificial intelligence (AI) that can be easily handled by non-data scientists was applied. With this system, models suitable for our own samples could be easily built on a Macintosh computer with Create ML. As examples, models constructed by learning using chromosome images derived from various plant species were able to classify images containing mitotic cells among samples from plant species not used for learning in addition to samples from the species used. The system also worked for cells in tissue sections and tetrads. Since this system is inexpensive and can be easily trained via deep learning using scientists' own samples, it can be used not only for chromosomal image analysis but also for analysis of other biology-related images.
    Matched MeSH terms: Artificial Intelligence
  13. Md Saleh NI, Ab Ghani H, Jilani Z
    Artif Intell Med, 2022 Oct;132:102394.
    PMID: 36207072 DOI: 10.1016/j.artmed.2022.102394
    Outbreaks of the COVID-19 pandemic caused by the SARS-CoV-2 infection that started in Wuhan, China, have quickly spread worldwide. The current situation has contributed to a dynamic rate of hospital admissions. Global efforts by Artificial Intelligence (AI) and Machine Learning (ML) communities to develop solutions to assist COVID-19-related research have escalated ever since. However, despite overwhelming efforts from the AI and ML community, many machine learning-based AI systems have been designed as black boxes. This paper proposes a model that utilizes Formal Concept Analysis (FCA) to explain a machine learning technique called Long-short Term Memory (LSTM) on a dataset of hospital admissions due to COVID-19 in the United Kingdom. This paper intends to increase the transparency of decision-making in the era of ML by using the proposed LSTM-FCA explainable model. Both LSTM and FCA are able to evaluate the data and explain the model to make the results more understandable and interpretable. The results and discussions are helpful and may lead to new research to optimize the use of ML in various real-world applications and to contain the disease.
    Matched MeSH terms: Artificial Intelligence
  14. Hamyoon H, Yee Chan W, Mohammadi A, Yusuf Kuzan T, Mirza-Aghazadeh-Attari M, Leong WL, et al.
    Eur J Radiol, 2022 Dec;157:110591.
    PMID: 36356463 DOI: 10.1016/j.ejrad.2022.110591
    PURPOSE: To develop and validate a machine learning (ML) model for the classification of breast lesions on ultrasound images.

    METHOD: In the present study, three separate data cohorts containing 1288 breast lesions from three countries (Malaysia, Iran, and Turkey) were utilized for MLmodel development and external validation. The model was trained on ultrasound images of 725 breast lesions, and validation was done separately on the remaining data. An expert radiologist and a radiology resident classified the lesions based on the BI-RADS lexicon. Thirteen morphometric features were selected from a contour of the lesion and underwent a three-step feature selection process. Five features were chosen to be fed into the model separately and combined with the imaging signs mentioned in the BI-RADS reference guide. A support vector classifier was trained and optimized.

    RESULTS: The diagnostic profile of the model with various input data was compared to the expert radiologist and radiology resident. The agreement of each approach with histopathologic specimens was also determined. Based on BI-RADS and morphometric features, the model achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.885, which is higher than the expert radiologist and radiology resident performances with AUC of 0.814 and 0.632, respectively in all cohorts. DeLong's test also showed that the AUC of the ML protocol was significantly different from that of the expert radiologist (ΔAUCs = 0.071, 95%CI: (0.056, 0.086), P = 0.005).

    CONCLUSIONS: These results support the possible role of morphometric features in enhancing the already well-excepted classification schemes.

    Matched MeSH terms: Artificial Intelligence
  15. Huqh MZU, Abdullah JY, Wong LS, Jamayet NB, Alam MK, Rashid QF, et al.
    Int J Environ Res Public Health, 2022 Aug 31;19(17).
    PMID: 36078576 DOI: 10.3390/ijerph191710860
    OBJECTIVE: The objective of this systematic review was (a) to explore the current clinical applications of AI/ML (Artificial intelligence and Machine learning) techniques in diagnosis and treatment prediction in children with CLP (Cleft lip and palate), (b) to create a qualitative summary of results of the studies retrieved.

    MATERIALS AND METHODS: An electronic search was carried out using databases such as PubMed, Scopus, and the Web of Science Core Collection. Two reviewers searched the databases separately and concurrently. The initial search was conducted on 6 July 2021. The publishing period was unrestricted; however, the search was limited to articles involving human participants and published in English. Combinations of Medical Subject Headings (MeSH) phrases and free text terms were used as search keywords in each database. The following data was taken from the methods and results sections of the selected papers: The amount of AI training datasets utilized to train the intelligent system, as well as their conditional properties; Unilateral CLP, Bilateral CLP, Unilateral Cleft lip and alveolus, Unilateral cleft lip, Hypernasality, Dental characteristics, and sagittal jaw relationship in children with CLP are among the problems studied.

    RESULTS: Based on the predefined search strings with accompanying database keywords, a total of 44 articles were found in Scopus, PubMed, and Web of Science search results. After reading the full articles, 12 papers were included for systematic analysis.

    CONCLUSIONS: Artificial intelligence provides an advanced technology that can be employed in AI-enabled computerized programming software for accurate landmark detection, rapid digital cephalometric analysis, clinical decision-making, and treatment prediction. In children with corrected unilateral cleft lip and palate, ML can help detect cephalometric predictors of future need for orthognathic surgery.

    Matched MeSH terms: Artificial Intelligence
  16. Sikandar T, Rabbi MF, Ghazali KH, Altwijri O, Almijalli M, Ahamed NU
    Phys Eng Sci Med, 2022 Dec;45(4):1289-1300.
    PMID: 36352317 DOI: 10.1007/s13246-022-01195-3
    Unusual walk patterns may increase individuals' risks of falling. Anthropometric features of the human body, such as the body mass index (BMI), influences the walk patterns of individuals. In addition to the BMI, uneven walking surfaces may cause variations in the usual walk patterns of an individual that will potentially increase the individual's risk of falling. The objective of this study was to statistically evaluate the variations in the walk patterns of individuals belonging to two BMI groups across a wide range of walking surfaces and to investigate whether a deep learning method could classify the BMI-specific walk patterns with similar variations. Data collected by wearable inertial measurement unit (IMU) sensors attached to individuals with two different BMI were collected while walking on real-world surfaces. In addition to traditional statistical analysis tools, an advanced deep learning-based neural network was used to evaluate and classify the BMI-specific walk patterns. The walk patterns of overweight/obese individuals showed a greater correlation with the corresponding walking surfaces than the normal-weight population. The results were supported by the deep learning method, which was able to classify the walk patterns of overweight/obese (94.8 ± 4.5%) individuals more accurately than those of normal-weight (59.4 ± 23.7%) individuals. The results suggest that application of the deep learning method is more suitable for recognizing the walk patterns of overweight/obese population than those of normal-weight individuals. The findings from the study will potentially inform healthcare applications, including artificial intelligence-based fall assessment systems for minimizing the risk of fall-related incidents among overweight and obese individuals.
    Matched MeSH terms: Artificial Intelligence
  17. Martín DG, Florez SL, González-Briones A, Corchado JM
    Sensors (Basel), 2023 Jan 14;23(2).
    PMID: 36679779 DOI: 10.3390/s23020982
    The revolution generated by the Internet of Things (IoT) has radically changed the world; countless objects with remote sensing, actuation, analysis and sharing capabilities are interconnected over heterogeneous communication networks. Consequently, all of today's devices can connect to the internet and can provide valuable information for decision making. However, the data collected by different devices are in different formats, which makes it necessary to develop a solution that integrates comprehensive semantic tools to represent, integrate and acquire knowledge, which is a major challenge for IoT environments. The proposed solution addresses this challenge by using IoT semantic data to reason about actionable knowledge, combining next-generation semantic technologies and artificial intelligence through a set of cognitive components that enables easy interoperability and integration for both legacy systems and emerging technologies, such as IoT, to generate business value in terms of faster analytics and improved decision making. Thus, combining IoT environments with cognitive artificial intelligence services, COSIBAS builds an abstraction layer between existing platforms for IoT and AI technologies to enable cognitive solutions and increase interoperability across multiple domains. The resulting low-cost cross platform supports scalability and the evolution of large-scale heterogeneous systems and allows the modernization of legacy infrastructures with cognitive tools and communication mechanisms while reusing assets.
    Matched MeSH terms: Artificial Intelligence
  18. Chau RCW, Li GH, Tew IM, Thu KM, McGrath C, Lo WL, et al.
    Int Dent J, 2023 Oct;73(5):724-730.
    PMID: 37117096 DOI: 10.1016/j.identj.2023.03.007
    OBJECTIVES: Gingivitis is one of the most prevalent plaque-initiated dental diseases globally. It is challenging to maintain satisfactory plaque control without continuous professional advice. Artificial intelligence may be used to provide automated visual plaque control advice based on intraoral photographs.

    METHODS: Frontal view intraoral photographs fulfilling selection criteria were collected. Along the gingival margin, the gingival conditions of individual sites were labelled as healthy, diseased, or questionable. Photographs were randomly assigned as training or validation datasets. Training datasets were input into a novel artificial intelligence system and its accuracy in detection of gingivitis including sensitivity, specificity, and mean intersection-over-union were analysed using validation dataset. The accuracy was reported according to STARD-2015 statement.

    RESULTS: A total of 567 intraoral photographs were collected and labelled, of which 80% were used for training and 20% for validation. Regarding training datasets, there were total 113,745,208 pixels with 9,270,413; 5,711,027; and 4,596,612 pixels were labelled as healthy, diseased, and questionable respectively. Regarding validation datasets, there were 28,319,607 pixels with 1,732,031; 1,866,104; and 1,116,493 pixels were labelled as healthy, diseased, and questionable, respectively. AI correctly predicted 1,114,623 healthy and 1,183,718 diseased pixels with sensitivity of 0.92 and specificity of 0.94. The mean intersection-over-union of the system was 0.60 and above the commonly accepted threshold of 0.50.

    CONCLUSIONS: Artificial intelligence could identify specific sites with and without gingival inflammation, with high sensitivity and high specificity that are on par with visual examination by human dentist. This system may be used for monitoring of the effectiveness of patients' plaque control.

    Matched MeSH terms: Artificial Intelligence
  19. Futane A, Jadhav P, Mustafa AH, Srinivasan A, Narayanamurthy V
    Biotechnol Lett, 2024 Feb;46(1):1-17.
    PMID: 38155321 DOI: 10.1007/s10529-023-03454-z
    Metal-Organic Frameworks (MOFs) have exceptional inherent properties that make them highly suitable for diverse applications, such as catalysis, storage, optics, chemo sensing, and biomedical science and technology. Over the past decades, researchers have utilized various techniques, including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasonic, to synthesize MOFs with tailored properties. Post-synthetic modification of linkers, nodal components, and crystallite domain size and morphology can functionalize MOFs to improve their aptamer applications. Advancements in AI and machine learning led to the development of nonporous MOFs and nanoscale MOFs for medical purposes. MOFs have exhibited promise in cancer therapy, with the successful accumulation of a photosensitizer in cancer cells representing a significant breakthrough. This perspective is focused on MOFs' use as advanced materials and systems for cancer therapy, exploring the challenging aspects and promising features of MOF-based cancer diagnosis and treatment. The paper concludes by emphasizing the potential of MOFs as a transformative technology for cancer treatment and diagnosis.
    Matched MeSH terms: Artificial Intelligence
  20. Tsoi K, Yiu K, Lee H, Cheng HM, Wang TD, Tay JC, et al.
    J Clin Hypertens (Greenwich), 2021 03;23(3):568-574.
    PMID: 33533536 DOI: 10.1111/jch.14180
    The prevalence of hypertension is increasing along with an aging population, causing millions of premature deaths annually worldwide. Low awareness of blood pressure (BP) elevation and suboptimal hypertension diagnosis serve as the major hurdles in effective hypertension management. The advent of artificial intelligence (AI), however, sheds the light of new strategies for hypertension management, such as remote supports from telemedicine and big data-derived prediction. There is considerable evidence demonstrating the feasibility of AI applications in hypertension management. A foreseeable trend was observed in integrating BP measurements with various wearable sensors and smartphones, so as to permit continuous and convenient monitoring. In the meantime, further investigations are advised to validate the novel prediction and prognostic tools. These revolutionary developments have made a stride toward the future model for digital management of chronic diseases.
    Matched MeSH terms: Artificial Intelligence
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links