OBJECTIVES: In spontaneously breathing preterm infants with RDS, to determine if continuous distending pressure (CDP) reduces the need for IPPV and associated morbidity without adverse effects.
SEARCH STRATEGY: The standard search strategy of the Neonatal Review group was used. This included searches of the Oxford Database of Perinatal Trials, Cochrane Controlled Trials Register, MEDLINE (1966-Jan. 2000), previous reviews including cross references, abstracts, conference and symposia proceedings, expert informants, journal hand searching mainly in the English language.
SELECTION CRITERIA: All trials using random or quasi-random patient allocation of newborn infants with RDS were eligible. Interventions were continuous distending pressure including continuous positive airway pressure (CPAP) by mask, nasal prong, nasopharyngeal tube, or endotracheal tube, or continuous negative pressure (CNP) via a chamber enclosing the thorax and lower body, compared with standard care.
DATA COLLECTION AND ANALYSIS: Standard methods of the Cochrane Collaboration and its Neonatal Review Group, including independent assessment of trial quality and extraction of data by each author, were used.
MAIN RESULTS: CDP is associated with a lower rate of failed treatment (death or use of assisted ventilation), overall mortality, and mortality in infants with birthweights above 1500 g. The use of CDP is associated with an increased rate of pneumothorax.
REVIEWER'S CONCLUSIONS: In preterm infants with RDS the application of CDP either as CPAP or CNP is associated with some benefits in terms of reduced respiratory failure and reduced mortality. CDP is associated with an increased rate of pneumothorax. The applicability of these results to current practice is difficult to assess, given the outdated methods to administer CDP, low use of antenatal corticosteroids, non-availability of surfactant and the intensive care setting of the 1970s when these trials were done. Where resources are limited, such as in developing countries, CPAP for RDS may have a clinical role. Further research is required to determine the best mode of administration and its role in modern intensive care settings
METHODS: A survey was conducted between December 2016 and August 2017 at Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur. Parents of preterm infants ≤36 weeks' gestation were invited to answer a self-administered questionnaire to assess their knowledge and practise regarding SIDS risk reduction.
RESULTS: Forty-nine (61.33%) of the 80 parents had heard of SIDS prior to the interview, with social media being the commonest source of information (67.3%). Only 35 (43.7%) correctly answered at least five of nine questions on knowledge of SIDS risk reduction ("good knowledge"). When compared with the group of parents who answered less than five questions correctly ("poor knowledge"), there was no significant difference in the demographic and infant characteristics between the groups. The majority (68.8%) of parents practised bed sharing with their infants, and this was significantly more common in the group of parents with poor knowledge (P = 0.01). Household smoking was also significantly more common in the group of parents with poor knowledge (P = 0.048).
CONCLUSION: Knowledge on SIDS risk reduction measures was generally poor among parents of preterm infants in this study. Cigarette smoking, bed sharing and non-supine sleep positions, which are associated with increased risk of SIDS, were common practise among the present subjects.
STUDY DESIGN: Blinded assessments were conducted at 2-3 years corrected age with the Bayley Scales of Infant and Toddler Development, Third Edition or the Ages and Stages Questionnaire by intention to treat.
RESULTS: Of the 290 children enrolled, 40 could not be contacted and 10 failed to attend appointments. Among the 240 children for whom outcomes at age 2 years were available, 1 child had a lethal congenital anomaly, 1 child had consent for follow-up withdrawn, and 23 children died. The primary outcome, which was available in 238 (82%) of those randomized, occurred in 47 of the 117 (40%) children assigned to initial FiO2 0.21 and in 38 of the 121 (31%) assigned to initial FiO2 1.0 (OR, 1.47; 95% CI, 0.86-2.5; P = .16). No difference in NDI was found in 215 survivors randomized to FiO2 0.21 vs 1.0 (OR, 1.26; 95% CI, 0.70-2.28; P = .11). In post hoc exploratory analyses in the whole cohort, children with a 5-minute blood oxygen saturation (SpO2) <80% were more likely to die or to have NDI (OR, 1.85; 95% CI, 1.07-3.2; P = .03).
CONCLUSIONS: Initial resuscitation of infants <32 weeks' gestation with initial FiO2 0.21 had no significant effect on death or NDI compared with initial FiO2 1.0. Further evaluation of optimum initial FiO2, including SpO2 targeting, in a large randomized controlled trial is needed.
TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Network Registry ACTRN 12610001059055 and the National Malaysian Research Registry NMRR-07-685-957.
BACKGROUND: Vulnerable premature infants commonly require special care in the NICUs. In most cases, prolonged hospitalization results in stress and anxiety for the mothers.
METHODS: A non-probability convenience survey was used in a public hospital, with 180 mothers completing the 26-item Perceived Stress Scale (PSS) and a 40-item State-Trait Anxiety Inventory (STAI).
RESULTS: 56.5% of mothers had high levels of stress, 85.5% of mothers had a high level of state-anxiety and 67.8% of mothers had a high level of trait-anxiety. The stress experienced by these mothers had a significant relationship with anxiety, and was found to be associated with state and trait anxiety levels, but not with maternal and infant characteristics.
CONCLUSION: Mothers in this setting revealed high levels of stress and anxiety during their premature infants' NICU admission. An immediate interventional programme focusing on relieving mothers' anxiety and stress is needed to prevent maternal stress and anxiety at an early stage.
OBJECTIVES: We aimed to assess the effectiveness of co-bedding compared with separate (individual) care for stable preterm twins in the neonatal nursery in promoting growth and neurodevelopment and reducing short- and long-term morbidities, and to determine whether co-bedding is associated with significant adverse effects.As secondary objectives, we sought to evaluate effects of co-bedding via the following subgroup analyses: twin pairs with different weight ranges (very low birth weight [VLBW] < 1500 grams vs non-VLBW), twins with versus without significant growth discordance at birth, preterm versus borderline preterm twins, twins co-bedded in incubator versus cot at study entry, and twins randomized by twin pair versus neonatal unit.
SEARCH METHODS: We used the standard search strategy of the Cochrane Neonatal Review Group (CNRG). We used keywords and medical subject headings (MeSH) to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 2), MEDLINE (via PubMed), EMBASE (hosted by EBSCOHOST), the Cumulative Index to Nursing and Allied Health Literature (CINAHL), and references cited in our short-listed articles, up to February 29, 2016.
SELECTION CRITERIA: We included randomized controlled trials with randomization by twin pair and/or by neonatal unit. We excluded cross-over studies.
DATA COLLECTION AND ANALYSIS: We extracted data using standard methods of the CNRG. Two review authors independently assessed the relevance and risk of bias of retrieved records. We contacted the authors of included studies to request important information missing from their published papers. We expressed our results using risk ratios (RRs) and mean differences (MDs) when appropriate, along with 95% confidence intervals (95% CIs). We adjusted the unit of analysis from individual infants to twin pairs by averaging measurements for each twin pair (continuous outcomes) or by counting outcomes as positive if developed by either twin (dichotomous outcomes).
MAIN RESULTS: Six studies met the inclusion criteria; however, only five studies provided data for analysis. Four of the six included studies were small and had significant limitations in design. As each study reported outcomes differently, data for most outcomes were effectively contributed by a single study. Study authors reported no differences between co-bedded twins and twins receiving separate care in terms of rate of weight gain (MD 0.20 grams/kg/d, 95% CI -1.60 to 2.00; one study; 18 pairs of twins; evidence of low quality); apnea, bradycardia, and desaturation (A/B/D) episodes (RR 0.85, 95% CI 0.18 to 4.05; one study; 62 pairs of twins; evidence of low quality); episodes in co-regulated states (MD 0.96, 95% CI -3.44 to 5.36; one study; three pairs of twins; evidence of very low quality); suspected or proven infection (RR 0.84, 95% CI 0.30 to 2.31; three studies; 65 pairs of twins; evidence of very low quality); length of hospital stay (MD -4.90 days, 95% CI -35.23 to 25.43; one study; three pairs of twins; evidence of very low quality); and parental satisfaction measured on a scale of 0 to 55 (MD -0.38, 95% CI -4.49 to 3.73; one study; nine pairs of twins; evidence of moderate quality). Although co-bedded twins appeared to have lower pain scores 30 seconds after heel lance on a scale of 0 to 21 (MD -0.96, 95% CI -1.68 to -0.23; two studies; 117 pairs of twins; I(2) = 75%; evidence of low quality), they had higher pain scores 90 seconds after the procedure (MD 1.00, 95% CI 0.14 to 1.86; one study; 62 pairs of twins). Substantial heterogeneity in the outcome of infant pain response after heel prick at 30 seconds post procedure and conflicting results at 30 and 90 seconds post procedure precluded clear conclusions.
AUTHORS' CONCLUSIONS: Evidence on the benefits and harms of co-bedding for stable preterm twins was insufficient to permit recommendations for practice. Future studies must be adequately powered to detect clinically important differences in growth and neurodevelopment. Researchers should assess harms such as infection, along with medication errors and caregiver satisfaction.
OBJECTIVES: To determine whether nasal continuous positive airway pressure (NCPAP), applied immediately after extubation of preterm infants, reduces the incidence of extubation failure and the need for additional ventilatory support, without clinically important adverse events.
SEARCH METHODS: We searched CENTRAL, MEDLINE, Embase, and trial registries on 22 September 2023 using a revised strategy. We searched conference abstracts and the reference lists of included studies and relevant systematic reviews.
SELECTION CRITERIA: Eligible trials employed random or quasi-random allocation of preterm infants undergoing extubation. Eligible comparisons were NCPAP (delivered by any device and interface) versus head box oxygen, extubation to room air, or any other form of low-pressure supplemental oxygen. We grouped the comparators under the term no continuous positive airway pressure (no CPAP).
DATA COLLECTION AND ANALYSIS: Two review authors independently assessed the risk of bias and extracted data from the included studies. Where studies were sufficiently similar, we performed a meta-analysis, calculating risk ratios (RRs) with their 95% confidence intervals (CIs) for dichotomous data. For the primary outcomes that showed an effect, we calculated the number needed to treat for an additional beneficial outcome (NNTB). We used the GRADE approach to assess the certainty of the evidence for clinically important outcomes.
MAIN RESULTS: We included nine trials (with 726 infants) in the quantitative synthesis of this updated review. Eight studies were conducted in high-income countries between 1982 and 2005. One study was conducted in Chile, which was classified as upper-middle income at the time of the study. All studies used head box oxygen in the control arm. Risk of bias was generally low. However, due to the inherent nature of the intervention, no studies incorporated blinding. Consequently, the neonatal intensive care unit staff were aware of the assigned group for each infant, and we judged all studies at high risk of performance bias. However, we assessed blinding of the outcome assessor (detection bias) as low risk for seven studies because they used objective criteria to define both primary outcomes. NCPAP compared with no CPAP may reduce the risk of extubation failure (RR 0.62, 95% CI 0.51 to 0.76; risk difference (RD) -0.17, 95% -0.23 to -0.10; NNTB 6, 95% CI 4 to 10; I2 = 55%; 9 studies, 726 infants; low-certainty evidence) and endotracheal reintubation (RR 0.79, 95% 0.64 to 0.98; RD -0.07, 95% CI -0.14 to -0.01; NNTB 15, 95% CI 8 to 100; I2 = 65%; 9 studies; 726 infants; very low-certainty evidence), though the evidence for endotracheal reintubation is very uncertain. NCPAP compared with no CPAP may have little or no effect on bronchopulmonary dysplasia, but the evidence is very uncertain (RR 0.89, 95% CI 0.47 to 1.68; RD -0.03, 95% CI -0.22 to 0.15; 1 study, 92 infants; very low-certainty evidence). No study reported neurodevelopmental outcomes.
AUTHORS' CONCLUSIONS: NCPAP may be more effective than no CPAP in preventing extubation failure in preterm infants if applied immediately after extubation from invasive mechanical ventilation. We are uncertain whether it can reduce the risk of reintubation or bronchopulmonary dysplasia. We have no information on long-term neurodevelopmental outcomes. Although there is only low-certainty evidence for the effectiveness of NCPAP immediately after extubation in preterm infants, we consider there is no need for further research on this intervention, which has become standard practice.
SUBJECTS AND METHODS: The package known as "Preemie Mom: A Guide for You" was designed based on Stufflebeam's model and has four phases: (1) content evaluation from available sources of information, (2) input evaluation based on mothers' need related to premature baby care, (3) process evaluation for package designing and content drafting, and (4) product evaluation to determine its feasibility. The contents were extracted and collated for validation by consulting various specialists in related fields. A final draft was drawn based on comments given by experts. Comments from the mothers were taken for formatting, visual appearance, and content flow for easy understanding and usage.
RESULTS: All ten existing articles and eight relevant documents were gathered and critically appraised. The package was designed based on 11 main components related to the care of premature baby after discharge. The content validation was accepted at a minimum score of 0.85 for the item-level content validity index analysis. Both experts and mothers were agreed that the package is easy to use and well accepted as a guide after discharge. The agreement rate by the mothers was at 93.33% and greater for the front page, writing style, structure, presentation, and motives of the package.
CONCLUSIONS: "Preemie Mom: A Guide for You" is a validated health educational package and ready to be used to meet the needs of the mother for premature baby care at home.
OBJECTIVE: The review was performed to answer the following research question: "In VPNs, are high amounts of arginine in PN, compared with low amounts of arginine, associated with appropriate circulating concentrations of arginine?" Therefore, the aims were to 1) quantify the relationship between parenteral arginine intakes and plasma arginine concentrations in PN-dependent VPNs; 2) identify any features of study design that affect this relationship; and 3) estimate the target parenteral arginine dose to achieve desirable preterm plasma arginine concentrations.
DATA SOURCES: The PubMed, Scopus, Web of Science, and Cochrane databases were searched regardless of study design; review articles were not included.
DATA EXTRACTION: Only articles that discussed amino acid (AA) intake and measured plasma AA profile post PN in VPNs were included. Data were obtained using a data extraction checklist that was devised for the purpose of this review.
DATA ANALYSIS: Twelve articles met the inclusion criteria. The dose-concentration relationship of arginine content (%) and absolute arginine intake (mg/(kg × d)) with plasma arginine concentrations showed a significant positive correlation (P < 0.001).
CONCLUSION: Future studies using AA solutions with arginine content of 17%-20% and protein intakes of 3.5-4.0 g/kg per day may be needed to achieve higher plasma arginine concentrations.