Displaying publications 41 - 51 of 51 in total

Abstract:
Sort:
  1. Jiading Wang, Tianfeng Gu, Jianbin Wang, Yuanjun Xu, Peng Chen, Muhammad Aqeel Ashraf
    Sains Malaysiana, 2017;46:2049-2059.
    The development degree of fissure water in underground rock is a great trouble to the construction of railway tunnel, which will cause a series of environmental geological problems. Take the surrounding rock-section of the typical red clay in Lvliang-Mt. railway tunnel below the underground water level as an example, several aspects about the red clay surrounding rock will be researched, including pore water pressure, volume moisture content, stress of surrounding rock, vault subsidence and horizontal convergence through the field monitoring. Taking into account the importance of railway tunnel engineering, the large shear test of red clay was carried out at the construction site specially and the reliable situ shear strength parameters of surrounding rock will be obtained. These investigations and field tests helped to do a series of work: Three dimensional finite element numerical model of railway tunnel will be established, the deformation law of the red clay surrounding rock will be investigated, respectively, for the water-stress coupling effect and without considering it, the variation of the pore water pressure during excavation, the influence degree about the displacement field and stress field of water-stress coupling on red clay-rock will be discussed and the mechanism of the surrounding rock deformation will be submitted. Finally, the paper puts forward the feasible drainage scheme of the surrounding rock and the tunnel cathode. The geological environment safety of tunnel construction is effectively protected.
    Matched MeSH terms: Geology
  2. Ramli AT, Hussein AW, Lee MH
    Appl Radiat Isot, 2001 Feb;54(2):327-33.
    PMID: 11200896
    Measurements of environmental terrestrial gamma radiation dose-rate (TGRD) have been made in Johore, Malaysia. The focus is on determining a relationship between geological type and TGRD levels. Data were compared using the one way analysis of variance (ANOVA), in some instances revealing significant differences between TGRD measurements and the underlying geological structure.
    Matched MeSH terms: Geology*; Geological Phenomena
  3. Douglas I, Bidin K, Balamurugan G, Chappell NA, Walsh RP, Greer T, et al.
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1749-61.
    PMID: 11605619
    Ten years' hydrological investigations at Danum have provided strong evidence of the effects of extremes of drought, as in the April 1992 El Niño southern oscillation event, and flood, as in January 1996. The 1.5 km2 undisturbed forest control catchment experienced a complete drying out of the stream for the whole 1.5 km of defined channel above the gauging station in 1992, but concentrated surface flow along every declivity from within a few metres of the catchment divide after the exceptional rains of 19 January 1996. Under these natural conditions, erosion is episodic. Sediment is discharged in pulses caused by storm events, collapse of debris dams and occasional landslips. Disturbance by logging accentuates this irregular regime. In the first few months following disturbance, a wave of sediment is moved by each storm, but over subsequent years, rare events scour sediment from bare areas, gullies and channel deposits. The spatial distribution of sediment sources changes with time after logging, as bare areas on slopes are revegetated and small gullies are filled with debris. Extreme storm events, as in January 1996, cause logging roads to collapse, with landslides leading to surges of sediment into channels, reactivating the pulsed sediment delivery by every storm that happened immediately after logging. These effects are not dampened out with increasing catchment scale. Even the 721 km2 Sungai Segama has a sediment yield regime dominated by extreme events, the sediment yield in that single day on 19 January 1996 exceeding the annual sediment load in several previous years. In a large disturbed catchment, such road failures and logging-activity-induced mass movements increase the mud and silt in floodwaters affecting settlements downstream. Management systems require long-term sediment reduction strategies. This implies careful road design and good water movement regulation and erosion control throughout the logging process.
    Matched MeSH terms: Geology
  4. Zhu H
    Ecol Evol, 2017 12;7(23):10398-10408.
    PMID: 29238563 DOI: 10.1002/ece3.3561
    The tropical climate in China exists in southeastern Xizang (Tibet), southwestern to southeastern Yunnan, southwestern Guangxi, southern Guangdon, southern Taiwan, and Hainan, and these southern Chinese areas contain tropical floras. I checked and synonymized native seed plants from these tropical areas in China and recognized 12,844 species of seed plants included in 2,181 genera and 227 families. In the tropical flora of southern China, the families are mainly distributed in tropical areas and extend into temperate zones and contribute to the majority of the taxa present. The genera with tropical distributions also make up the most of the total flora. In terms of geographical elements, the genera with tropical Asian distribution constitute the highest proportion, which implies tropical Asian or Indo-Malaysia affinity. Floristic composition and geographical elements are conspicuous from region to region due to different geological history and ecological environments, although floristic similarities from these regions are more than 90% and 64% at the family and generic levels, respectively, but lower than 50% at specific level. These differences in the regional floras could be influenced by historical events associated with the uplift of the Himalayas, such as the southeastward extrusion of the Indochina geoblock, clockwise rotation and southeastward movement of Lanping-Simao geoblock, and southeastward movement of Hainan Island. The similarity coefficients between the flora of southern China and those of Indochina countries are more than 96% and 80% at family and generic levels, indicating their close floristic affinity and inclusion in the same biogeographically floristic unit.
    Matched MeSH terms: Geology
  5. Rahman MNIA, Jeofry H, Basarian MS
    Data Brief, 2020 Oct;32:106194.
    PMID: 32904202 DOI: 10.1016/j.dib.2020.106194
    The survey data on potential aquifer was collected at two sites located in Banggi Island (i.e. Laksian Primary School [LPS] and Padang Primary School [PPS]), Malaysia on 25 and 26 April 2013. Both locations are geologically surrounded by various types of lithologies, namely, sandstone, mudstone, siltstone, shale, chert, conglomerate, lignite, tuff, limestone, terrace sand, gravel and coral. The resistivity data consisted of six-line pole-dipole short arrays and were recorded in-situ using SAS 4000 ABEM Lund Imaging System, together with a relay switching unit (Electrode Selector ES 464), six multiconductor cables, steel rod electrodes and jumpers. The data, namely electrode spacing, depth of investigation, subsurface resistivity, type of material and horizontal data coverage were used to assess the characteristics of the potential aquifer. The recorded data were then processed using RES2DINV software to obtain 2-D inversion model of the subsurface. The data were also equipped with six models of inverse resistivity section for both areas. The data obtained can be used by the government and stakeholders for groundwater exploration and extraction in order to provide water supplies for local communities, especially since access to these resources from the surrounding water treatment plants on the island is limited.
    Matched MeSH terms: Geology
  6. Faizalhakim, A.S., Nurhidayu, S., Norizah, K.
    MyJurnal
    Rainfall-runoff information is critical for water resource and river basin management. Runoff can be estimated by using two methods; gauged method (direct measurement) and ungauged method (indirect formula and equation). The in-situ measurement provides real-time and accurate yet required time-consuming operation and inaccessibility topography. Therefore, the runoff estimation modelling and equation was developed to overcome the limitation of in-situ measurement. SCS-CN is a simple model of ungauged method, where runoff volume (Q) resulting from rainfall (P) is formulated using equation of (Q= (P-Ia) 2 / (P-Ia + S). It was known as the best technique to be adopted for large basin study where time and manpower also accessibility are limited. SCS-CN method also is widely use in prediction software as it taken into consideration of the effects of soil, properties, land cover and antecedent moisture. Curve Number is well developed in USA for the agriculture purpose with many investigations to validate and calibrate the values of curve number. It was applied in numerous river basins in temperate and other regions e.g. US, Argentina, India, China, South Korea, Palestine and Malaysia. However, the reliability of the CN in the tropics is doubtable due to different land use characteristics, soil type, climate, geological features and rainfall pattern and variability. Based on the reviewed conceptual and applications of SCS-CN in temperate and tropics, numerous studies found the SCS-CN method is reliable and practical for runoff estimation in tropics region.
    Matched MeSH terms: Geology
  7. van der Ent A, Edraki M
    Environ Geochem Health, 2018 Feb;40(1):189-207.
    PMID: 27848090 DOI: 10.1007/s10653-016-9892-3
    The Mamut Copper Mine (MCM) located in Sabah (Malaysia) on Borneo Island was the only Cu-Au mine that operated in the country. During its operation (1975-1999), the mine produced 2.47 Mt of concentrate containing approximately 600,000 t of Cu, 45 t of Au and 294 t of Ag, and generated about 250 Mt of overburden and waste rocks and over 150 Mt of tailings, which were deposited at the 397 ha Lohan tailings storage facility, 15.8 km from the mine and 980 m lower in altitude. The MCM site presents challenges for environmental rehabilitation due to the presence of large volumes of sulphidic minerals wastes, the very high rainfall and the large volume of polluted mine pit water. This indicates that rehabilitation and treatment is costly, as for example, exceedingly large quantities of lime are needed for neutralisation of the acidic mine pit discharge. The MCM site has several unusual geochemical features on account of the concomitant occurrence of acid-forming sulphide porphyry rocks and alkaline serpentinite minerals, and unique biological features because of the very high plant diversity in its immediate surroundings. The site hence provides a valuable opportunity for researching natural acid neutralisation processes and mine rehabilitation in tropical areas. Today, the MCM site is surrounded by protected nature reserves (Kinabalu Park, a World Heritage Site, and Bukit Hampuan, a Class I Forest Reserve), and the environmental legacy prevents de-gazetting and inclusion in these protected area in the foreseeable future. This article presents a preliminary geochemical investigation of waste rocks, sediments, secondary precipitates, surface water chemistry and foliar elemental uptake in ferns, and discusses these results in light of their environmental significance for rehabilitation.
    Matched MeSH terms: Geology*; Geologic Sediments/chemistry
  8. Alnour IA, Wagiran H, Ibrahim N, Hamzah S, Elias MS, Laili Z, et al.
    Radiat Prot Dosimetry, 2014 Jan;158(2):201-7.
    PMID: 23965286 DOI: 10.1093/rpd/nct206
    The distribution of natural radionuclides ((238)U, (232)Th and (40)K) and their radiological hazard effect in rocks collected from the state of Johor, Malaysia were determined by gamma spectroscopy using a high-purity germanium detector. The highest values of (238)U, (232)Th and (40)K activity concentrations (67±6, 85±7 and 722±18 Bg kg(-1), respectively) were observed in the granite rock. The lowest concentrations of (238)U and (232)Th (2±0.1 Bq kg(-1) for (238)U and 2±0.1 Bq kg(-1) for (232)Th) were observed in gabbro rock. The lowest concentration of (40)K (45±2 Bq kg(-1)) was detected in sandstone. The radium equivalent activity concentrations for all rock samples investigated were lower than the internationally accepted value of 370 Bq kg(-1). The highest value of radium equivalent in the present study (239±17 Bq kg(-1)) was recorded in the area of granite belonging to an acid intrusive rock geological structure. The absorbed dose rate was found to range from 4 to 112 nGy h(-1). The effective dose ranged from 5 to 138 μSv h(-1). The internal and external hazard index values were given in results lower than unity. The purpose of this study is to provide information related to radioactivity background levels and the effects of radiation on residents in the study area under investigation. Moreover, the relationships between the radioactivity levels in the rocks within the geological structure of the studied area are discussed.
    Matched MeSH terms: Geology
  9. Zarcinas BA, Ishak CF, McLaughlin MJ, Cozens G
    Environ Geochem Health, 2004 Dec;26(4):343-57.
    PMID: 15719158
    In a reconnaisance soil geochemical and plant survey undertaken to study the heavy metal uptake by major food crops in Malaysia, 241 soils were analysed for cation exchange capacity (CEC), organic carbon (C), pH, electrical conductivity (EC) and available phosphorus (P) using appropriate procedures. These soils were also analysed for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) using aqua regia digestion, together with 180 plant samples using nitric acid digestion. Regression analysis between the edible plant part and aqua regia soluble soil As, Cd, Cr, Cu, Hg, Ni, Pb and Zn concentrations sampled throughout Peninsular Malaysia, indicated a positive relationship for Pb in all the plants sampled in the survey (R2 = 0.195, p < 0.001), for Ni in corn (R2 = 0.649, p < 0.005), for Cu in chili (R2 = 0.344, p < 0.010) and for Zn in chili (R2 = 0.501, p < 0.001). Principal component analysis of the soil data suggested that concentrations of Co, Ni, Pb and Zn were strongly correlated with concentrations of Al and Fe, which is suggestive of evidence of background variations due to changes in soil mineralogy. Thus the evidence for widespread contamination of soils by these elements through agricultural activities is not strong. Chromium was correlated with soil pH and EC, Na, S, and Ca while Hg was not correlated with any of these components, suggesting diffuse pollution by aerial deposition. However As, Cd, Cu were strongly associated with organic matter and available and aqua regia soluble soil P, which we attribute to inputs in agricultural fertilisers and soil organic amendments (e.g. manures, composts).
    Matched MeSH terms: Geology
  10. Zaini Hamzah, Wan Noorhayani Wan Rosdi, Abdul Khalik Wood
    MyJurnal
    Well water is a renewable natural resources and one of the drinking water sources. The well water may constituted of dissolved essential chemicals such as K+, Ca''+ and Na+ ; and natural radionuclides such as radioisotopes from uranium-thorium decay series. The geology and mineral composition of the soil will determined the kinds and levels of chemical contents in the groundwater resources. The water flows through the geological formation and dissolved the chemicals before reaching the aquifers. To evaluate how much chemicals and natural radioactive in the water resources, a study has been carried out. Well water samples in this study were taken from 3 districts in Kelantan, which is Bachok, Machang and Kuala Krai. Similarly, in situ water quality parameters were measured using YSI portable water quality parameter include pH, salinity, dissolve oxygen(DO), conductivity, turbidity and total dissolved solids(TDS). The concentrations of K', Ca" and Na' were determined using Energy Dispersive X-ray Fluorescence (EDXRF). Five ml of filtered sample was pipette into the sample cup and, irradiated and measured for 100 seconds counting times. The type of filter used for measuring If+ and Cat{ was Al-thin and default for Nat The ranged of concentration of Kt Ce and Na+ is 23.04-251.89, 3.12-.45.41, and 3.71-125.75 ppm, respectively.
    Matched MeSH terms: Geology
  11. Alomari AH, Saleh MA, Hashim S, Alsayaheen A, Abukashabeh A
    Isotopes Environ Health Stud, 2019 May;55(2):211-226.
    PMID: 30789050 DOI: 10.1080/10256016.2019.1581776
    An extensive study was conducted to determine the activity concentrations of natural and artificial radionuclides 226Ra, 232Th, 40K, and 137Cs in soil samples of each governate of Jordan. A total of 370 samples have been measured using a high-purity germanium detector. The activity concentration for 226Ra, 232Th, 40K, and 137Cs has mean values of 42 ± 3, 23 ± 3, 309 ± 21, and 3.7 ± 0.9 Bq kg-1, respectively. The highest mean activity concentration for 226Ra was found to be 138 ± 4 Bq kg-1 in the Alkarak governate. In the Ajloun and Jarash governates, the highest mean activity concentration was 35 ± 3 Bq kg-1 for 232Th, and 14.2 ± 1.9 Bq kg-1 for 137Cs, respectively. Geological influence on the activity concentrations was investigated using the one-way analysis of variance (ANOVA) and independent samples. The ANOVA results indicate that there are strong significant differences between the activity concentrations of 232Th, 40K, and 137Cs based on geological formations the radionuclides occur. The main contribution to gamma dose rate was due to 226Ra activity concentration. Radium equivalent and external hazard index are associated with a mean value of 98 Bq kg-1, and 0.266, respectively.
    Matched MeSH terms: Geology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links