Displaying publications 41 - 60 of 121 in total

Abstract:
Sort:
  1. Lim KT, Hanifah YA, Mohd Yusof MY, Thong KL
    Trop Biomed, 2012 Jun;29(2):212-9.
    PMID: 22735842 MyJurnal
    Staphylococcus aureus is a persistent human pathogen responsible for a variety of infections ranging from soft-tissue infections to bacteremia. It produces a variety of virulence factors which are responsible for specific acute staphylococcal toxaemia syndromes. The objective of this study was to determine the prevalence of a repertoire of toxin genes among Malaysian MRSA strains and their genetic diversity by PCR-RFLP of coa gene. One hundred eighty-eight strains (2003, 2004, 2007 and 2008) of methicillin-resistant S. aureus (MRSA) were screened for 20 genes encoding for extracellular virulence determinant (sea, seb, sec, sed, see, seg, seh, sei, sej, tst, eta, etb, etd) and adhesins (cna, etb, fnbA, fnbB, hlg, ica, sdrE). The genetic relatedness of these strains was determined by PCR-RFLP of coa gene and agr grouping. Majority of the strains were tested positive for efb and fnbA (96% each), ica (78%) and hlg (59%) genes. A total of 101 strains were positive for at least one type of staphylococcal enterotoxin genes with sea being the predominant. Genes for seb, sed, see, seh, sej, eta and etb were not detected in any of the MRSA strains. The prevalence of sea, sec and ica among strains isolated in 2008 was increased significantly (p< 0.05) compared to 2003. Most of the strains were of agr type I (97.5%) followed by agr type II (1.2%) and agr type III (0.6%). All sea, sei and tst gene-positive strains were of agr type I. The only etd positive strain was agr type III. PCR-RFLP of coa produced 47 different patterns. The number of strains with virulence factors (sea, sec and ica) had increased over the years. No direct correlation between PCR-RFLP- coa profiles and virulotypes was observed.
    Matched MeSH terms: Genes, Bacterial*
  2. Abatcha MG, Effarizah ME, Rusul G
    Int J Food Microbiol, 2019 Feb 02;290:180-183.
    PMID: 30342248 DOI: 10.1016/j.ijfoodmicro.2018.09.021
    Salmonella enterica serovar Paratyphi B (S. Paratyphi B) is a major foodborne pathogen distributed all over the world. However, little is known about the antibiotic resistance, genetic relatedness and virulence profile of S. Paratyphi B isolated from leafy vegetables and the processing environment in Malaysia. In this study, 6 S. Paratyphi B isolates were recovered from different vegetables and drain water of processing areas obtained from fresh food markets in Malaysia. The isolates were characterized by antibiogram, Pulsed-field gel electrophoresis (PFGE) and virulence genes. Antibiotic susceptibility test showed that 3 of the isolates were resistant to the antibiotics. These include S. Paratyphi B SP251 isolate, which was resistant to chloramphenicol, ampicillin, sulfonamides and streptomycin; Isolate SP246 which was resistant to chloramphenicol, sulfonamides and streptomycin and Isolate SP235 showing resistance to nalidixic acid only. PFGE subtyped the 6 S. Paratyphi B isolates into 6 distinct XbaI-pulsotypes, with a wide range of genetic similarity (0.55 to 0.9). The isolates from different sources and fresh food markets location were genetically diverse. Thirteen (tolC, orgA, spaN, prgH, sipB, invA, pefA, sofB, msgA, cdtB, pagC, spiA and spvB) out of the 17 virulence genes tested were found in all of the S. Paratyphi B isolates. Another gene (lpfC), was found only in one isolate (SP051). None of the isolates possessed sifA, sitC and ironN genes. In summary, this study provides unique information on antibiotic resistance, genetic relatedness, and virulotyping of S. Paratyphi B isolated from leafy vegetables and processing environment.
    Matched MeSH terms: Genes, Bacterial/genetics
  3. Hendriksen RS, Munk P, Njage P, van Bunnik B, McNally L, Lukjancenko O, et al.
    Nat Commun, 2019 03 08;10(1):1124.
    PMID: 30850636 DOI: 10.1038/s41467-019-08853-3
    Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we use metagenomic analysis of untreated sewage to characterize the bacterial resistome from 79 sites in 60 countries. We find systematic differences in abundance and diversity of AMR genes between Europe/North-America/Oceania and Africa/Asia/South-America. Antimicrobial use data and bacterial taxonomy only explains a minor part of the AMR variation that we observe. We find no evidence for cross-selection between antimicrobial classes, or for effect of air travel between sites. However, AMR gene abundance strongly correlates with socio-economic, health and environmental factors, which we use to predict AMR gene abundances in all countries in the world. Our findings suggest that global AMR gene diversity and abundance vary by region, and that improving sanitation and health could potentially limit the global burden of AMR. We propose metagenomic analysis of sewage as an ethically acceptable and economically feasible approach for continuous global surveillance and prediction of AMR.
    Matched MeSH terms: Genes, Bacterial*
  4. Kumar N, Mariappan V, Baddam R, Lankapalli AK, Shaik S, Goh KL, et al.
    Nucleic Acids Res, 2015 Jan;43(1):324-35.
    PMID: 25452339 DOI: 10.1093/nar/gku1271
    The discordant prevalence of Helicobacter pylori and its related diseases, for a long time, fostered certain enigmatic situations observed in the countries of the southern world. Variation in H. pylori infection rates and disease outcomes among different populations in multi-ethnic Malaysia provides a unique opportunity to understand dynamics of host-pathogen interaction and genome evolution. In this study, we extensively analyzed and compared genomes of 27 Malaysian H. pylori isolates and identified three major phylogeographic lineages: hspEastAsia, hpEurope and hpSouthIndia. The analysis of the virulence genes within the core genome, however, revealed a comparable pathogenic potential of the strains. In addition, we identified four genes limited to strains of East-Asian lineage. Our analyses identified a few strain-specific genes encoding restriction modification systems and outlined 311 core genes possibly under differential evolutionary constraints, among the strains representing different ethnic groups. The cagA and vacA genes also showed variations in accordance with the host genetic background of the strains. Moreover, restriction modification genes were found to be significantly enriched in East-Asian strains. An understanding of these variations in the genome content would provide significant insights into various adaptive and host modulation strategies harnessed by H. pylori to effectively persist in a host-specific manner.
    Matched MeSH terms: Genes, Bacterial
  5. Soheili S, Ghafourian S, Sekawi Z, Neela V, Sadeghifard N, Ramli R, et al.
    ScientificWorldJournal, 2014;2014:623174.
    PMID: 25147855 DOI: 10.1155/2014/623174
    Enterococcus, a Gram-positive facultative anaerobic cocci belonging to the lactic acid bacteria of the phylum Firmicutes, is known to be able to resist a wide range of hostile conditions such as different pH levels, high concentration of NaCl (6.5%), and the extended temperatures between 5(°)C and 65(°)C. Despite being the third most common nosocomial pathogen, our understanding on its virulence factors is still poorly understood. The current study was aimed to determine the prevalence of different virulence genes in Enterococcus faecalis and Enterococcus faecium. For this purpose, 79 clinical isolates of Malaysian enterococci were evaluated for the presence of virulence genes. pilB, fms8, efaAfm, and sgrA genes are prevalent in all clinical isolates. In conclusion, the pathogenicity of E. faecalis and E. faecium could be associated with different virulence factors and these genes are widely distributed among the enterococcal species.
    Matched MeSH terms: Genes, Bacterial
  6. Puah SM, Puthucheary SD, Wang JT, Pan YJ, Chua KH
    ScientificWorldJournal, 2014;2014:590803.
    PMID: 25215325 DOI: 10.1155/2014/590803
    The Gram-negative saprophyte Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease which is endemic in Southeast Asia and northern Australia. This bacterium possesses many virulence factors which are thought to contribute to its survival and pathogenicity. Using a virulent clinical isolate of B. pseudomallei and an attenuated strain of the same B. pseudomallei isolate, 6 genes BPSL2033, BP1026B_I2784, BP1026B_I2780, BURPS1106A_A0094, BURPS1106A_1131, and BURPS1710A_1419 were identified earlier by PCR-based subtractive hybridization. These genes were extensively characterized at the molecular level, together with an additional gene BPSL3147 that had been identified by other investigators. Through a reverse genetic approach, single-gene knockout mutants were successfully constructed by using site-specific insertion mutagenesis and were confirmed by PCR. BPSL2033::Km and BURPS1710A_1419::Km mutants showed reduced rates of survival inside macrophage RAW 264.7 cells and also low levels of virulence in the nematode infection model. BPSL2033::Km demonstrated weak statistical significance (P = 0.049) at 8 hours after infection in macrophage infection study but this was not seen in BURPS1710A_1419::Km. Nevertheless, complemented strains of both genes were able to partially restore the gene defects in both in vitro and in vivo studies, thus suggesting that they individually play a minor role in the virulence of B. pseudomallei.
    Matched MeSH terms: Genes, Bacterial
  7. Lim YL, Ee R, Yin WF, Chan KG
    Sensors (Basel), 2014 Apr 22;14(4):7026-40.
    PMID: 24759107 DOI: 10.3390/s140407026
    Quorum sensing is a well-studied cell-to-cell communication method that involves a cell-density dependent regulation of genes expression mediated by signalling molecules. In this study, a bacterium isolated from a plant material compost pile was found to possess quorum sensing activity based on bioassay screening. Isolate YL12 was identified using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and molecular typing using rpoD gene which identified the isolate as Aeromonas caviae. High resolution tandem mass spectrometry was subsequently employed to identify the N-acyl homoserine lactone profile of Aeromonas caviae YL12 and confirmed that this isolate produced two short chain N-acyl homoserine lactones, namely C4-HSL and C6, and the production was observed to be cell density-dependent. Using the thin layer chromatography (TLC) bioassay, both AHLs were found to activate C. violaceum CV026, whereas only C6-HSL was revealed to induce bioluminescence expression of E. coli [pSB401]. The data presented in this study will be the leading steps in understanding the role of quorum sensing in Aeromonas caviae strain YL12.
    Matched MeSH terms: Genes, Bacterial
  8. Tan JL, Khang TF, Ngeow YF, Choo SW
    BMC Genomics, 2013;14:879.
    PMID: 24330254 DOI: 10.1186/1471-2164-14-879
    Mycobacterium abscessus is a rapidly growing mycobacterium that is often associated with human infections. The taxonomy of this species has undergone several revisions and is still being debated. In this study, we sequenced the genomes of 12 M. abscessus strains and used phylogenomic analysis to perform subspecies classification.
    Matched MeSH terms: Genes, Bacterial
  9. Marrero G, Schneider KL, Jenkins DM, Alvarez AM
    Int J Syst Evol Microbiol, 2013 Sep;63(Pt 9):3524-3539.
    PMID: 24003072 DOI: 10.1099/ijs.0.046490-0
    Bacterial heart rot of pineapple reported in Hawaii in 2003 and reoccurring in 2006 was caused by an undetermined species of Dickeya. Classification of the bacterial strains isolated from infected pineapple to one of the recognized Dickeya species and their phylogenetic relationships with Dickeya were determined by a multilocus sequence analysis (MLSA), based on the partial gene sequences of dnaA, dnaJ, dnaX, gyrB and recN. Individual and concatenated gene phylogenies revealed that the strains form a clade with reference Dickeya sp. isolated from pineapple in Malaysia and are closely related to D. zeae; however, previous DNA-DNA reassociation values suggest that these strains do not meet the genomic threshold for consideration in D. zeae, and require further taxonomic analysis. An analysis of the markers used in this MLSA determined that recN was the best overall marker for resolution of species within Dickeya. Differential intraspecies resolution was observed with the other markers, suggesting that marker selection is important for defining relationships within a clade. Phylogenies produced with gene sequences from the sequenced genomes of strains D. dadantii Ech586, D. dadantii Ech703 and D. zeae Ech1591 did not place the sequenced strains with members of other well-characterized members of their respective species. The average nucleotide identity (ANI) and tetranucleotide frequencies determined for the sequenced strains corroborated the results of the MLSA that D. dadantii Ech586 and D. dadantii Ech703 should be reclassified as Dickeya zeae Ech586 and Dickeya paradisiaca Ech703, respectively, whereas D. zeae Ech1591 should be reclassified as Dickeya chrysanthemi Ech1591.
    Matched MeSH terms: Genes, Bacterial
  10. Koh SF, Tay ST, Sermswan R, Wongratanacheewin S, Chua KH, Puthucheary SD
    J Microbiol Methods, 2012 Sep;90(3):305-8.
    PMID: 22705921 DOI: 10.1016/j.mimet.2012.06.002
    We have developed a multiplex PCR assay for rapid identification and differentiation of cultures for Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia mallei and Burkholderia cepacia complex. The assay is valuable for use in clinical and veterinary laboratories, and in a deployable laboratory during outbreaks.
    Matched MeSH terms: Genes, Bacterial
  11. Teh CS, Chua KH, Thong KL
    J Appl Microbiol, 2010 Jun;108(6):1940-5.
    PMID: 19891709 DOI: 10.1111/j.1365-2672.2009.04599.x
    To develop a multiplex PCR targeting the gyrB and pntA genes for Vibrio species differentiation.
    Matched MeSH terms: Genes, Bacterial
  12. Eng SA, Nathan S
    Front Microbiol, 2015;6:290.
    PMID: 25914690 DOI: 10.3389/fmicb.2015.00290
    The tropical pathogen Burkholderia pseudomallei requires long-term parenteral antimicrobial treatment to eradicate the pathogen from an infected patient. However, the development of antibiotic resistance is emerging as a threat to this form of treatment. To meet the need for alternative therapeutics, we proposed a screen of natural products for compounds that do not kill the pathogen, but in turn, abrogate bacterial virulence. We suggest that the use of molecules or compounds that are non-bactericidal (bacteriostatic) will reduce or abolish the development of resistance by the pathogen. In this study, we adopted the established Caenorhabditis elegans-B. pseudomallei infection model to screen a collection of natural products for any that are able to extend the survival of B. pseudomallei infected worms. Of the 42 natural products screened, only curcumin significantly improved worm survival following infection whilst not affecting bacterial growth. This suggested that curcumin promoted B. pseudomallei-infected worm survival independent of pathogen killing. To validate that the protective effect of curcumin was directed toward the pathogen, bacteria were treated with curcumin prior to infection. Worms fed with curcumin-treated bacteria survived with a significantly extended mean-time-to-death (p < 0.0001) compared to the untreated control. In in vitro assays, curcumin reduced the activity of known virulence factors (lipase and protease) and biofilm formation. To determine if other bacterial genes were also regulated in the presence of curcumin, a genome-wide transcriptome analysis was performed on curcumin-treated pathogen. A number of genes involved in iron acquisition and transport as well as genes encoding hypothetical proteins were induced in the presence of curcumin. Thus, we propose that curcumin may attenuate B. pseudomallei by modulating the expression of a number of bacterial proteins including lipase and protease as well as biofilm formation whilst concomitantly regulating iron transport and other proteins of unknown function.
    Matched MeSH terms: Genes, Bacterial
  13. Kalai Chelvam K, Yap KP, Chai LC, Thong KL
    PLoS One, 2015;10(5):e0126207.
    PMID: 25946205 DOI: 10.1371/journal.pone.0126207
    Salmonella enterica serovar Typhi (S. Typhi) is a foodborne pathogen that causes typhoid fever and infects only humans. The ability of S. Typhi to survive outside the human host remains unclear, particularly in human carrier strains. In this study, we have investigated the catabolic activity of a human carrier S. Typhi strain in both planktonic and biofilm cells using the high-throughput Biolog Phenotype MicroArray, Minimum Biofilm Eradication Concentration (MBEC) biofilm inoculator (96-well peg lid) and whole genome sequence data. Additional strains of S. Typhi were tested to further validate the variation of catabolism in selected carbon substrates in the different bacterial growth phases. The analyzes of the carbon utilization data indicated that planktonic cells of the carrier strain, S. Typhi CR0044 could utilize a broader range of carbon substrates compared to biofilm cells. Pyruvic acid and succinic acid which are related to energy metabolism were actively catabolised in the planktonic stage compared to biofilm stage. On the other hand, glycerol, L-fucose, L-rhamnose (carbohydrates) and D-threonine (amino acid) were more actively catabolised by biofilm cells compared to planktonic cells. Notably, dextrin and pectin could induce strong biofilm formation in the human carrier strain of S. Typhi. However, pectin could not induce formation of biofilm in the other S. Typhi strains. Phenome data showed the utilization of certain carbon substrates which was supported by the presence of the catabolism-associated genes in S. Typhi CR0044. In conclusion, the findings showed the differential carbon utilization between planktonic and biofilm cells of a S. Typhi human carrier strain. The differences found in the carbon utilization profiles suggested that S. Typhi uses substrates mainly found in the human biliary mucus glycoprotein, gallbladder, liver and cortex of the kidney of the human host. The observed diversity in the carbon catabolism profiles among different S. Typhi strains has suggested the possible involvement of various metabolic pathways that might be related to the virulence and pathogenesis of this host-restricted human pathogen. The data serve as a caveat for future in-vivo studies to investigate the carbon metabolic activity to the pathogenesis of S. Typhi.
    Matched MeSH terms: Genes, Bacterial
  14. Oulghazi S, Cigna J, Lau YY, Moumni M, Chan KG, Faure D
    Int J Syst Evol Microbiol, 2019 Feb;69(2):470-475.
    PMID: 30601112 DOI: 10.1099/ijsem.0.003180
    Pectobacterium carotovorum M022T has been isolated from a waterfall source in Selangor district (Malaysia). Using genomic and phenotypic tests, we re-examined the taxonomical position of this strain. Based on 14 concatenated housekeeping genes (fusA, rpoD, rpoS, acnA, purA, gyrB, recA, mdh, mtlD, groEL, secY, glyA, gapA and rplB), multi-locus sequence analysis revealed that strain M022T falls into a novel clade separated from the other Pectobacterium species. The in silico DNA-DNA hybridization and average nucleotide identity values were lower than the 70 and 95 % threshold values, respectively. In addition, by combining genomic and phenotypic tests, strain M022T may be distinguished from the other Pectobacterium isolates by its incapacity to grow on d(+)-xylose, l-rhamnose, cellobiose and lactose. Strain M022T (=CFBP 8629T=LMG 30744T) is proposed as the type strain of the Pectobacteriumfontis sp. nov.
    Matched MeSH terms: Genes, Bacterial
  15. Al-Talib H, Yean CY, Al-Khateeb A, Hassan H, Singh KK, Al-Jashamy K, et al.
    BMC Microbiol, 2009;9:113.
    PMID: 19476638 DOI: 10.1186/1471-2180-9-113
    Staphylococcus aureus is a major human pathogen, especially methicillin-resistant S. aureus (MRSA), which causes a wide range of hospital and community-acquired infections worldwide. Conventional testing for detection of MRSA takes 2-5 days to yield complete information of the organism and its antibiotic sensitivity pattern.
    Matched MeSH terms: Genes, Bacterial
  16. Syafiq IM, Huong KH, Shantini K, Vigneswari S, Aziz NA, Amirul AA, et al.
    Enzyme Microb Technol, 2017 Mar;98:1-8.
    PMID: 28110659 DOI: 10.1016/j.enzmictec.2016.11.011
    Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is noted for its high biocompatibility, which makes it an excellent candidate for biopharmaceutical applications. The wild-type Cupriavidus sp. USMAA1020 strain is able to synthesize P(3HB-co-4HB) copolymers with different 4HB monomer compositions (up to 70mol%) in shaken flask cultures. Combinations of 4HB carbon precursors consisting of 1,6-hexanediol and γ-butyrolactone were applied for the production of P(3HB-co-4HB) with different 4HB molar fraction. A sharp increase in 4HB monomer composition was attained by introducing additional copies of PHA synthase gene (phaC), responsible for P(3HB-co-4HB) polymerization. The phaC of Cupriavidus sp. USMAA1020 and Cupriavidus sp. USMAA2-4 were cloned and heterologously introduced into host, wild-type Cupriavidus sp. USMAA1020. The gene dosage treatment resulted in the accumulation of 93mol% 4HB by the transformant strains when grown in similar conditions as the wild-type USMAA1020. The PHA synthase activities for both transformants were almost two-fold higher than the wild-type. The ability of the transformants to produce copolymers with high 4HB monomer composition was also tested in large scale production system using 5L and 30L bioreactors with a constant oxygen mass transfer rate. The 4HB monomer composition could be maintained at a range of 83-89mol%. The mechanical and thermal properties of copolymers improved with increasing 4HB monomer composition. The copolymers produced could be tailored for specific biopharmaceutical applications based on their properties.
    Matched MeSH terms: Genes, Bacterial
  17. Yusof HA, Desa M NM, Masri SN, Malina O, Jamal F
    Trop Biomed, 2015 Sep;32(3):413-8.
    PMID: 26695201 MyJurnal
    Hyaluronatelyase produced by various microorganisms are capable of degrading hyaluronic acid in connective tissues and initiating the spread of infection by opening an access for the pathogen into host tissues. The present study attempts to determine the distribution of hyaluronatelyase-producing Streptococcus pneumoniae among invasive, non invasive and carriage isolates, and correlate it with the clinical sources, year of isolation, colonial morphology and their serotypes. A total of 100 isolates from various clinical samples were selected and screened for hyaluronatelyase production and presence of the encoding SpnHyl gene. All isolates possessed SpnHyl gene. Ninety-six isolates including 34 carriage isolates were positive for production of hyaluronatelyase. Four hyaluronatelyase-negative isolates were from blood (2 isolates) and sputum (2 isolates). No significant association was detected among hyaluronatelyase production and bacterial characteristics except for colonial morphology (p = 0.040). High percentages of hyaluronatelyase production in these isolates suggest their possible role as human pathogens.
    Matched MeSH terms: Genes, Bacterial
  18. Khayi S, Cigna J, Chong TM, Quêtu-Laurent A, Chan KG, Hélias V, et al.
    Int J Syst Evol Microbiol, 2016 Dec;66(12):5379-5383.
    PMID: 27692046 DOI: 10.1099/ijsem.0.001524
    Pectobacterium wasabiae was originally isolated from Japanese horseradish (Eutrema wasabi), but recently some Pectobacterium isolates collected from potato plants and tubers displaying blackleg and soft rot symptoms were also assigned to P. wasabiae. Here, combining genomic and phenotypical data, we re-evaluated their taxonomic position. PacBio and Illumina technologies were used to complete the genome sequences of P. wasabiae CFBP 3304T and RNS 08-42-1A. Multi-locus sequence analysis showed that the P. wasabiae strains RNS 08-42-1A, SCC3193, CFIA1002 and WPP163, which were collected from potato plant environment, constituted a separate clade from the original Japanese horseradish P. wasabiae. The taxonomic position of these strains was also supported by calculation of the in-silico DNA-DNA hybridization, genome average nucleotide indentity, alignment fraction and average nucleotide indentity values. In addition, they were phenotypically distinguished from P. wasabiae strains by producing acids from (+)-raffinose, α-d(+)-α-lactose, d(+)-galactose and (+)-melibiose but not from methyl α-d-glycopyranoside, (+)-maltose or malonic acid. The name Pectobacterium parmentieri sp. nov. is proposed for this taxon; the type strain is RNS 08-42-1AT (=CFBP 8475T=LMG 29774T).
    Matched MeSH terms: Genes, Bacterial
  19. Lye YL, Bong CW, Lee CW, Zhang RJ, Zhang G, Suzuki S, et al.
    Sci Total Environ, 2019 Oct 20;688:1335-1347.
    PMID: 31726563 DOI: 10.1016/j.scitotenv.2019.06.304
    The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMXr) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L-1 with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMXr-bacteria (107 CFU mL-1) and SRGs (10-1/16S copies mL-1). Pearson correlation showed only positive correlation between the PO4 and SMXr-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMXr-bacteria and SRGs in the river.
    Matched MeSH terms: Genes, Bacterial
  20. Uni S, Mat Udin AS, Agatsuma T, Junker K, Saijuntha W, Bunchom N, et al.
    Parasit Vectors, 2020 Feb 06;13(1):50.
    PMID: 32028994 DOI: 10.1186/s13071-020-3907-8
    BACKGROUND: The genus Onchocerca Diesing, 1841 includes species of medical importance, such as O. volvulus (Leuckart, 1893), which causes river blindness in the tropics. Recently, zoonotic onchocercosis has been reported in humans worldwide. In Japan, O. dewittei japonica Uni, Bain & Takaoka, 2001 from wild boars is a causative agent for this zoonosis. Many filarioid nematodes are infected with Wolbachia endosymbionts which exhibit various evolutionary relationships with their hosts. While investigating the filarial fauna of Borneo, we discovered an undescribed Onchocerca species in the bearded pig Sus barbatus Müller (Cetartiodactyla: Suidae).

    METHODS: We isolated Onchocerca specimens from bearded pigs and examined their morphology. For comparative material, we collected fresh specimens of O. d. dewittei Bain, Ramachandran, Petter & Mak, 1977 from banded pigs (S. scrofa vittatus Boie) in Peninsular Malaysia. Partial sequences of three different genes (two mitochondrial genes, cox1 and 12S rRNA, and one nuclear ITS region) of these filarioids were analysed. By multi-locus sequence analyses based on six genes (16S rDNA, ftsZ, dnaA, coxA, fbpA and gatB) of Wolbachia, we determined the supergroups in the specimens from bearded pigs and those of O. d. dewittei.

    RESULTS: Onchocerca borneensis Uni, Mat Udin & Takaoka n. sp. is described on the basis of morphological characteristics and its genetic divergence from congeners. Molecular characteristics of the new species revealed its close evolutionary relationship with O. d. dewittei. Calculated p-distance for the cox1 gene sequences between O. borneensis n. sp. and O. d. dewittei was 5.9%, while that between O. d. dewittei and O. d. japonica was 7.6%. No intraspecific genetic variation was found for the new species. Wolbachia strains identified in the new species and O. d. dewittei belonged to supergroup C and are closely related.

    CONCLUSIONS: Our molecular analyses of filarioids from Asian suids indicate that the new species is sister to O. d. dewittei. On the basis of its morphological and molecular characteristics, we propose to elevate O. d. japonica to species level as O. japonica Uni, Bain & Takaoka, 2001. Coevolutionary relationships exist between the Wolbachia strains and their filarial hosts in Borneo and Peninsular Malaysia.

    Matched MeSH terms: Genes, Bacterial
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links