Displaying publications 41 - 60 of 146 in total

Abstract:
Sort:
  1. Kumar S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA
    Mini Rev Med Chem, 2019;19(10):851-864.
    PMID: 30306864 DOI: 10.2174/1389557518666181009141924
    BACKGROUND: A series of 5-(2-amino-6-(3/4-bromophenyl)pyrimidin-4-yl)benzene-1,3-diol scaffolds was synthesized by Claisen-Schmidt condensation and characterized by NMR, IR, Mass and elemental analyses.

    METHODS: The synthesized pyrimidine scaffolds were screened for their antimicrobial activity by tube dilution method as well for antiproliferative activity (human colorectal (HCT116) cancer cell line) by SRB assay.

    RESULTS: The antimicrobial screening results demonstrated that compounds, k6, k12, k14 and k20 were found to be the most potent ones against selected microbial species. The anticancer screening results indicated that compounds, k8 and k14 displayed potent anticancer activity against cancer cell line (HCT116).

    CONCLUSION: Further, the molecular docking study carried to find out the interaction between active pyrimidine compounds with CDK-8 protein indicated that compound k14 showed best dock score with better potency within the ATP binding pocket and may be used as a lead for rational drug designing of the anticancer molecule.

    Matched MeSH terms: Drug Design
  2. Kumar S, Singh J, Narasimhan B, Shah SAA, Lim SM, Ramasamy K, et al.
    Chem Cent J, 2018 Oct 22;12(1):106.
    PMID: 30345469 DOI: 10.1186/s13065-018-0475-5
    BACKGROUND: Pyrimidine is an important pharmacophore in the field of medicinal chemistry and exhibit a broad spectrum of biological potentials. A study was carried out to identify the target protein of potent bis-pyrimidine derivatives using reverse docking program. PharmMapper, a robust online tool was used for identifying the target proteins based on reverse pharmacophore mapping. The murine macrophage (RAW 264.7) and human embryonic kidney (HEK-293) cancer cell line used for selectivity and safety study.

    METHODS: An open web server PharmMapper was used to identify the possible target of the developed compounds through reverse pharmacophore mapping. The results were analyzed and validated through docking with Schrodinger v9.6 using 10 protein GTPase HRas selected as possible target. The docking studies with Schrödinger validated the binding behavior of bis-pyrimidine compounds within GTP binding pocket. MTT and sulforhodamine assay were used as antiproliferative activity.

    RESULTS AND DISCUSSION: The protein was found one of the top scored targets of the compound 18, hence, the GTPase HRas protein was found crucial to be targeted for competing cancer. Toxicity study demonstrated the significant selectivity of most active compounds, 12, 16 and 18 showed negligible cell toxicity at their IC50 concentration.

    CONCLUSION: From the results, we may conclude that GTPase HRas as a possible target of studied bis-pyrimidine derivatives where the retrieved information may be quite useful for rational drug designing.

    Matched MeSH terms: Drug Design
  3. Abdullah MN, Ali Y, Abd Hamid S
    Chem Biol Drug Des, 2022 Dec;100(6):921-934.
    PMID: 34651438 DOI: 10.1111/cbdd.13974
    Tyrosine kinase overexpression could result in an unfavourable consequence of cancer progression in the body. A number of kinase inhibitor drugs targeting various cancer-related protein kinases have been developed and proven successful in clinical therapy. Benzimidazole is one of the most studied scaffolds in the search for effective anticancer drugs. The association of various functional groups and the structural design of the compounds may influence the binding towards the receptor. Despite numerous publications on the design, synthesis and biological assays of benzimidazole derivatives, their inhibitory activities against epidermal growth factor receptor (EGFR), a receptor tyrosine kinase (RTK), have not been specifically analysed. This review covers recent research reports on the anticancer activity of benzimidazole derivatives focusing on EGFR expression cell lines, based on their structure-activity relationship study. We believe it would aid researchers to envision the challenges and explore benzimidazole's potentials as tyrosine kinase inhibitors.
    Matched MeSH terms: Drug Design
  4. Cao H, Ng MCK, Jusoh SA, Tai HK, Siu SWI
    J Comput Aided Mol Des, 2017 Sep;31(9):855-865.
    PMID: 28864946 DOI: 10.1007/s10822-017-0047-0
    [Formula: see text]-Helical transmembrane proteins are the most important drug targets in rational drug development. However, solving the experimental structures of these proteins remains difficult, therefore computational methods to accurately and efficiently predict the structures are in great demand. We present an improved structure prediction method TMDIM based on Park et al. (Proteins 57:577-585, 2004) for predicting bitopic transmembrane protein dimers. Three major algorithmic improvements are introduction of the packing type classification, the multiple-condition decoy filtering, and the cluster-based candidate selection. In a test of predicting nine known bitopic dimers, approximately 78% of our predictions achieved a successful fit (RMSD <2.0 Å) and 78% of the cases are better predicted than the two other methods compared. Our method provides an alternative for modeling TM bitopic dimers of unknown structures for further computational studies. TMDIM is freely available on the web at https://cbbio.cis.umac.mo/TMDIM . Website is implemented in PHP, MySQL and Apache, with all major browsers supported.
    Matched MeSH terms: Drug Design
  5. Channar PA, Aziz M, Ejaz SA, Chaudhry GE, Saeed A, Ujan R, et al.
    J Biomol Struct Dyn, 2023 Feb;41(3):942-953.
    PMID: 34927557 DOI: 10.1080/07391102.2021.2018045
    The compounds 2a-2h containing a thiazolidinone pharmacophore were synthesized via hetrerocylization of thiosemicarbazones with dimethyl acetylenedicarboxylate. The hybrid molecules were evaluated for anticancer activity against the human cell lines MCF-7, T47D (human breast adenocarcinoma) and HeLa (cervical cancer). Compounds 2c showed effective cytotoxicity on MCF-7 and HeLa (GI50 6.40 ± 0.10 μM/mL and GI5010.30 ± 1.09 μM/mL), and compound 2d also showed effective cytotoxicity against MCF-7 and HeLa cell lines i.e., (GI50 16.60 ± 0.21 μM/mL and GI50 15.02 ± 0.14 μM/mL). These findings were comparable to cisplatin (azane;dichloroplatinum) the standard drug (GI50 13.20 ± μM/mL and 15.10 μM/mL respectively) and consequently nominated for determination of the mode of cell death. The results revealed the cytotoxic effects of 2c and 2d by induction of apoptosis in MCF-7 and HeLa cell lines. Moreover the results were further supported by the Molecular Docking which predicts the binding interactions of the best anticancer ligands with Ribonucleotide reductase (RNR), which is essential enzyme required for de-novo synthesis of DNA precursors. Molecular dynamic simulations were also performed to determine the stability of protein-ligand complex under different simulated conditions. In addition, the computational studies including DFTs, ADMET properties suggested these compounds can act as lead molecules, for the synthesis of novel drug candidates for the treatment of specific cancer and its associated malignancies.
    Matched MeSH terms: Drug Design
  6. Parvizpour S, Elengoe A, Alizadeh E, Razmara J, Shamsir MS
    J Biomol Struct Dyn, 2023 Nov;41(19):10037-10050.
    PMID: 36451602 DOI: 10.1080/07391102.2022.2152868
    Worldwide, breast cancer is the leading type of cancer among women. Overexpression of various prognostic indicators, including nuclear receptors, is linked to breast cancer features. To date, no effective drug has been discovered to block the proliferation of breast cancer cells. This study has been designed to discover target-based small molecular-like natural drug candidates that have anti-cancer potential without causing any serious side effects. A comprehensive substrate-based drug design was carried out to discover the potential plant compounds against the target breast cancer biomarkers including phytochemicals screening, active site identification, molecular docking, pharmacokinetic (PK) properties prediction, toxicity prediction, and molecular dynamics (MD) simulation approaches. Twenty plant compounds extracted from the rambutan (Nephelium lappaceum) were obtained from PubChem Database; and screened against the breast cancer biomarkers including estrogen receptor (ER), progesterone receptor (PR), and androgen receptor (AR). The best docking interaction was chosen based on the higher binding affinity. Analyzing the pharmacokinetic properties and toxicity prediction results indicated that the fifteen selected plant compounds have good potency without toxicity and are safe for humans. Four phytochemicals with a higher binding affinity were chosen for each breast cancer biomarker to study their stability in interaction with the target proteins using MD simulation. Among the above compounds, Ellagic acid showed the high binding affinity against all three breast cancer biomarkers.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Drug Design
  7. Eng-Chong T, Yean-Kee L, Chin-Fei C, Choon-Han H, Sher-Ming W, Li-Ping CT, et al.
    PMID: 23243448 DOI: 10.1155/2012/473637
    Boesenbergia rotunda is a herb from the Boesenbergia genera under the Zingiberaceae family. B. rotunda is widely found in Asian countries where it is commonly used as a food ingredient and in ethnomedicinal preparations. The popularity of its ethnomedicinal usage has drawn the attention of scientists worldwide to further investigate its medicinal properties. Advancement in drug design and discovery research has led to the development of synthetic drugs from B. rotunda metabolites via bioinformatics and medicinal chemistry studies. Furthermore, with the advent of genomics, transcriptomics, proteomics, and metabolomics, new insights on the biosynthetic pathways of B. rotunda metabolites can be elucidated, enabling researchers to predict the potential bioactive compounds responsible for the medicinal properties of the plant. The vast biological activities exhibited by the compounds obtained from B. rotunda warrant further investigation through studies such as drug discovery, polypharmacology, and drug delivery using nanotechnology.
    Matched MeSH terms: Drug Design
  8. Kumar M, Kumar D, Singh S, Chopra S, Mahmood S, Bhatia A
    Curr Pharm Des, 2024;30(6):410-419.
    PMID: 38747045 DOI: 10.2174/0113816128289965240123074111
    Foam-based delivery systems contain one or more active ingredients and dispersed solid or liquid components that transform into gaseous form when the valve is actuated. Foams are an attractive and effective delivery approach for medical, cosmetic, and pharmaceutical uses. The foams-based delivery systems are gaining attention due to ease of application as they allow direct application onto the affected area of skin without using any applicator or finger, hence increasing the compliance and satisfaction of the patients. In order to develop foam-based delivery systems with desired qualities, it is vital to understand which type of material and process parameters impact the quality features of foams and which methodologies may be utilized to investigate foams. For this purpose, Quality-by-Design (QbD) approach is used. It aids in achieving quality-based development during the development process by employing the QbD concept. The critical material attributes (CMAs) and critical process parameters (CPPs) were discovered through the first risk assessment to ensure the requisite critical quality attributes (CQAs). During the initial risk assessment, the high-risk CQAs were identified, which affect the foam characteristics. In this review, the authors discussed the various CMAs, CPPs, CQAs, and risk factors associated in order to develop an ideal foam-based formulation with desired characteristics.
    Matched MeSH terms: Drug Design
  9. Ng CL, Lim TS, Choong YS
    Mol Biotechnol, 2024 Apr;66(4):568-581.
    PMID: 37742298 DOI: 10.1007/s12033-023-00885-x
    Since the advent of hybridoma technology in the year 1975, it took a decade to witness the first approved monoclonal antibody Orthoclone OKT39 (muromonab-CD3) in the year 1986. Since then, continuous strides have been made to engineer antibodies for specific desired effects. The engineering efforts were not confined to only the variable domains of the antibody but also included the fragment crystallizable (Fc) region that influences the immune response and serum half-life. Engineering of the Fc fragment would have a profound effect on the therapeutic dose, antibody-dependent cell-mediated cytotoxicity as well as antibody-dependent cellular phagocytosis. The integration of computational techniques into antibody engineering designs has allowed for the generation of testable hypotheses and guided the rational antibody design framework prior to further experimental evaluations. In this article, we discuss the recent works in the Fc-fused molecule design that involves computational techniques. We also summarize the usefulness of in silico techniques to aid Fc-fused molecule design and analysis for the therapeutics application.
    Matched MeSH terms: Drug Design
  10. Iftikhar M, Shahnawaz, Saleem M, Riaz N, Aziz-Ur-Rehman, Ahmed I, et al.
    Arch Pharm (Weinheim), 2019 Dec;352(12):e1900095.
    PMID: 31544284 DOI: 10.1002/ardp.201900095
    A series of new N-aryl/aralkyl derivatives of 2-methyl-2-{5-(4-chlorophenyl)-1,3,4-oxadiazole-2ylthiol}acetamide were synthesized by successive conversions of 4-chlorobenzoic acid (a) into ethyl 4-chlorobenzoate (1), 4-chlorobenzoylhydrazide (2) and 5-(4-chlorophenyl)-1,3,4-oxadiazole-2-thiol (3), respectively. The required array of compounds (6a-n) was obtained by the reaction of 1,3,4-oxadiazole (3) with various electrophiles (5a-n) in the presence of DMF (N,N-dimethylformamide) and sodium hydroxide at room temperature. The structural determination of these compounds was done by infrared, 1 H-NMR (nuclear magnetic resonance), 13 C-NMR, electron ionization mass spectrometry, and high-resolution electron ionization mass spectrometry analyses. All compounds were evaluated for their α-glucosidase inhibitory potential. Compounds 6a, 6c-e, 6g, and 6i were found to be promising inhibitors of α-glucosidase with IC50 values of 81.72 ± 1.18, 52.73 ± 1.16, 62.62 ± 1.15, 56.34 ± 1.17, 86.35 ± 1.17, 52.63 ± 1.16 µM, respectively. Molecular modeling and ADME (absorption, distribution, metabolism, excretion) predictions supported the findings. The current synthesized library of compounds was achieved by utilizing very common raw materials in such a way that the synthesized compounds may prove to be promising drug leads.
    Matched MeSH terms: Drug Design*
  11. Yi YX, Gaurav A, Akowuah GA
    Curr Drug Discov Technol, 2020;17(2):248-260.
    PMID: 30332967 DOI: 10.2174/1570163815666181017091655
    INTRODUCTION: The primary aim of this study is to understand the binding of curcumin and its analogues to different PDE4 subtypes and identify the role of PDE4 subtype inhibition in the anti-inflammatory property of curcumin. Docking analysis has been used to acquire the above mentioned structural information and this has been further used for designing of curcumin derivatives with better anti-inflammatory activity.

    MATERIALS AND METHODS: Curcumin and its analogues were subjected to docking using PDE4A, PDE4B, PDE4C and PDE4D as the targets. A data set comprising 18 analogues of curcumin, was used as ligands for docking of PDE4 subtypes. Curcumin was used as the standard for comparison. Docking was performed using AutoDock Vina 1.1.2 software integrated in LigandScout 4.1. During this process water molecules were removed from proteins, charges were added and receptor structures were minimised by applying suitable force fields. The docking scores were compared, and the selectivity of compounds for PDE4B over PDE4D was calculated as well.

    RESULTS: All curcumin analogues used in the study showed good binding affinity with all PDE4 subtypes, with evident selectivity towards PDE4B subtype. Analogue A11 provides the highest binding affinity among all ligands.

    CONCLUSION: Curcumin and analogues have moderate to strong affinity towards all PDE4 subtypes and have evident selectivity towards PDE4B. The Oxygen atom of the methoxy group plays a key role in PDE4B binding and any alterations could interfere with the binding. Tetrahydropyran side chain and heterocyclic rings are also suggested to be helpful in PDE4B binding.

    Matched MeSH terms: Drug Design*
  12. Taha M, Ismail NH, Imran S, Rahim F, Wadood A, Al Muqarrabun LM, et al.
    Bioorg Chem, 2016 10;68:80-9.
    PMID: 27474803 DOI: 10.1016/j.bioorg.2016.07.010
    Thymidine phosphorylase (TP) is up regulated in wide variety of solid tumors and therefore presents a remarkable target for drug discovery in cancer. A novel class of extremely potent TPase inhibitors based on benzopyrazine (1-28) has been developed and evaluated against thymidine phosphorylase enzyme. Out of these twenty-eight analogs eleven (11) compounds 1, 4, 14, 15, 16, 17, 18, 19, 20, 24 and 28 showed potent thymidine phosphorylase inhibitory potentials with IC50 values ranged between 3.20±0.30 and 37.60±1.15μM when compared with the standard 7-Deazaxanthine (IC50=38.68±4.42μM). Structure-activity relationship was established and molecular docking studies were performed to determine the binding interactions of these newly synthesized compounds. Current studies have revealed that these compounds established stronger hydrogen bonding networks with active site residues as compare to the standard compound 7DX.
    Matched MeSH terms: Drug Design*
  13. Sulaiman I, Lim JC, Soo HL, Stanslas J
    Pulm Pharmacol Ther, 2016 Oct;40:52-68.
    PMID: 27453494 DOI: 10.1016/j.pupt.2016.07.005
    Extensive research into the therapeutics of asthma has yielded numerous effective interventions over the past few decades. However, adverse effects and ineffectiveness of most of these medications especially in the management of steroid resistant severe asthma necessitate the development of better medications. Numerous drug targets with inherent airway smooth muscle tone modulatory role have been identified for asthma therapy. This article reviews the latest understanding of underlying molecular aetiology of asthma towards design and development of better antiasthma drugs. New drug candidates with their putative targets that have shown promising results in the preclinical and/or clinical trials are summarised. Examples of these interventions include restoration of Th1/Th2 balance by the use of newly developed immunomodulators such as toll-like receptor-9 activators (CYT003-QbG10 and QAX-935). Clinical trials revealed the safety and effectiveness of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonists such as OC0000459, BI-671800 and ARRY-502 in the restoration of Th1/Th2 balance. Regulation of cytokine activity by the use of newly developed biologics such as benralizumab, reslizumab, mepolizumab, lebrikizumab, tralokinumab, dupilumab and brodalumab are at the stage of clinical development. Transcription factors are potential targets for asthma therapy, for example SB010, a GATA-3 DNAzyme is at its early stage of clinical trial. Other candidates such as inhibitors of Rho kinases (Fasudil and Y-27632), phosphodiesterase inhibitors (GSK256066, CHF 6001, roflumilast, RPL 554) and proteinase of activated receptor-2 (ENMD-1068) are also discussed. Preclinical results of blockade of calcium sensing receptor by the use of calcilytics such as calcitriol abrogates cardinal signs of asthma. Nevertheless, successful translation of promising preclinical data into clinically viable interventions remains a major challenge to the development of novel anti-asthmatics.
    Matched MeSH terms: Drug Design*
  14. Taha M, Rashid U, Imran S, Ali M
    Bioorg Med Chem, 2018 07 23;26(12):3654-3663.
    PMID: 29853339 DOI: 10.1016/j.bmc.2018.05.046
    Inhibition of Thymidine phosphorylase (TP) is continuously studied for the design and development of new drugs for the treatment of neoplastic diseases. As a part of our effort to identify TP inhibitors, we performed a structure-based virtual screening (SBVS) of our compound collection. Based on the insights gained from structures of virtual screening hits, a scaffold was designed using 1,3,4-oxadiazole as the basic structural feature and SAR studies were carried out for the optimization of this scaffold. Twenty-five novel bis-indole linked 1,3,4-oxadiazoles (7-31) were designed, synthesized and tested in vitro against E. coli TP (EcTP). Compound 7 emerged as potent TP inhibitor with an IC50 value of 3.50 ± 0.01 μM. Docking studies were carried out using GOLD software on thymidine phosphorylase from human (hTP) and E. coli (EcTP). Various hydrogen bonding, hydrophobic interactions, and π-π stacking were observed between designed molecules and the active site amino acid residues of the studied enzymes.
    Matched MeSH terms: Drug Design*
  15. Iftikhar F, Ali Y, Ahmad Kiani F, Fahad Hassan S, Fatima T, Khan A, et al.
    Bioorg Chem, 2017 10;74:53-65.
    PMID: 28753459 DOI: 10.1016/j.bioorg.2017.07.003
    In our previous report, we have identified 3,4-dihydropyrimidine scaffold as promising class of urease inhibitor in a structure based virtual screen (SBVS) experiment. In present study, we attempted to optimize the scaffold by varying C-5 substituent. The elongation of the C-5 chain was achieved by the reaction of C-5 ester with hydrazine leading to C-5 carbohydrazides which were further used as building blocks for the synthesis of fifteen new compounds having diverse moieties. A significantly higher in vitro urease inhibitory activity with IC50 values in submicromolar range was observed for semithiocarbazide derivatives (4a-c, 0.58-0.79µM) and isatin Schiff base derivative 5a (0.23µM). Docking analysis suggests that the synthesized compounds were anchored well in the catalytic site and extending to the entrance of binding pocket and thus restrict the mobility of the flap by interacting with its key amino acid residues. The overall results of urease inhibition have shown that these compounds can be further optimized and developed as lead urease inhibitors.
    Matched MeSH terms: Drug Design*
  16. Simoni E, Bartolini M, Abu IF, Blockley A, Gotti C, Bottegoni G, et al.
    Future Med Chem, 2017 06;9(10):953-963.
    PMID: 28632446 DOI: 10.4155/fmc-2017-0039
    AIM: Alzheimer pathogenesis has been associated with a network of processes working simultaneously and synergistically. Over time, much interest has been focused on cholinergic transmission and its mutual interconnections with other active players of the disease. Besides the cholinesterase mainstay, the multifaceted interplay between nicotinic receptors and amyloid is actually considered to have a central role in neuroprotection. Thus, the multitarget drug-design strategy has emerged as a chance to face the disease network.

    METHODS: By exploiting the multitarget approach, hybrid compounds have been synthesized and studied in vitro and in silico toward selected targets of the cholinergic and amyloidogenic pathways.

    RESULTS: The new molecules were able to target the cholinergic system, by joining direct nicotinic receptor stimulation to acetylcholinesterase inhibition, and to inhibit amyloid-β aggregation.

    CONCLUSION: The compounds emerged as a suitable starting point for a further optimization process.

    Matched MeSH terms: Drug Design*
  17. Naidu KR, Kumar KS, Arulselvan P, Reddy CB, Lasekan O
    Arch Pharm (Weinheim), 2012 Dec;345(12):957-63.
    PMID: 23015406 DOI: 10.1002/ardp.201200192
    A series of α-hydroxyphosphonates were synthesized from the reaction of aldehyde (1) with triethylphosphite (2) in the presence of oxone and evaluated for their antioxidant properties against lipid peroxidation, reduced glutathione, superoxide dismutase, and catalase. The majority of the compounds showed promising antioxidant activity. Diethyl anthracen-9-yl (hydroxy) methylphosphonate (3n) is the most potent and biologically active compound against free radicals.
    Matched MeSH terms: Drug Design*
  18. Lim WK
    Recent Pat CNS Drug Discov, 2007 Jun;2(2):107-12.
    PMID: 18221221
    G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors in humans. They convey extracellular signals into the cell interior by activating intracellular processes such as heterotrimeric G protein-dependent signaling pathways. They are widely distributed in the nervous system, and mediate key physiological processes including cognition, mood, appetite, pain and synaptic transmission. With at least 30% of marketed drugs being GPCR modulators, they are a major therapeutic target in the pharmaceutical industry's drug discovery programs. This review will survey recently patented ligands for GPCRs implicated in CNS disorders, in particular the metabotropic glutamate, adenosine and cannabinoid receptors. Metabotropic glutamate receptors regulate signaling by glutamate, the major excitatory brain neurotransmitter, while adenosine is a ubiquitous neuromodulater mediating diverse physiological effects. Recent patents for ligands of these receptors include mGluR5 antagonists and adenosine A(1) receptor agonists. Cannabinoid receptors remain one of the most important GPCR drug discovery target due to the intense interest in CB(1) receptor antagonists for treating obesity and metabolic syndrome. Such small molecule ligands are the outcome of the continuing focus of many pharmaceutical companies to identify novel GPCR agonist, antagonist or allosteric modulators useful for CNS disorders, for which more effective drugs are eagerly awaited.
    Matched MeSH terms: Drug Design*
  19. Kamarulzaman EE, Vanderesse R, Gazzali AM, Barberi-Heyob M, Boura C, Frochot C, et al.
    J Biomol Struct Dyn, 2017 Jan;35(1):26-45.
    PMID: 26766582 DOI: 10.1080/07391102.2015.1131196
    Vascular endothelial growth factor (VEGF) and its co-receptor neuropilin-1 (NRP-1) are important targets of many pro-angiogenic factors. In this study, nine peptides were synthesized and evaluated for their molecular interaction with NRP-1 and compared to our previous peptide ATWLPPR. Docking study showed that the investigated peptides shared the same binding region as shown by tuftsin known to bind selectively to NRP-1. Four pentapeptides (DKPPR, DKPRR, TKPPR and TKPRR) and a hexapeptide CDKPRR demonstrated good inhibitory activity against NRP-1. In contrast, peptides having arginine residue at sites other than the C-terminus exhibited low activity towards NRP-1 and this is confirmed by their inability to displace the VEGF165 binding to NRP-1. Docking study also revealed that replacement of carboxyl to amide group at the C-terminal arginine of the peptide did not affect significantly the binding interaction to NRP-1. However, the molecular affinity study showed that these peptides have marked reduction in the activity against NRP-1. Pentapeptides having C-terminal arginine showed strong interaction and good inhibitory activity with NRP thus may be a good template for anti-angiogenic targeting agent.
    Matched MeSH terms: Drug Design*
  20. Alomari M, Taha M, Imran S, Jamil W, Selvaraj M, Uddin N, et al.
    Bioorg Chem, 2019 11;92:103235.
    PMID: 31494327 DOI: 10.1016/j.bioorg.2019.103235
    Hybrid bis-coumarin derivatives 1-18 were synthesized and evaluated for their in vitro urease inhibitory potential. All compounds showed outstanding urease inhibitory potential with IC50 value (The half maximal inhibitory concentration) ranging in between 0.12 SD 0.01 and 38.04 SD 0.63 µM (SD standard deviation). When compared with the standard thiourea (IC50 = 21.40 ± 0.21 µM). Among these derivatives, compounds 7 (IC50 = 0.29 ± 0.01), 9 (IC50 = 2.4 ± 0.05), 10 (IC50 = 2.25 ± 0.05) and 16 (IC50 = 0.12 ± 0.01) are better inhibitors of the urease compared with thiourea (IC50 = 21.40 ± 0.21 µM). To find structure-activity relationship molecular docking as well as absorption, distribution, metabolism, and excretion (ADME) studies were also performed. Various spectroscopic techniques like 1H NMR, 13C NMR, and EI-MS were used for characterization of all synthesized analogs. All compounds were tested for cytotoxicity and found non-toxic.
    Matched MeSH terms: Drug Design*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links