The plant Catharanthus roseus is a rich source of terpenoid indole alkaloids (TIA). Some of the TIA are important as antihypertensive (ajmalicine) and anticancer (vinblastine and vincristine) drugs. However, production of the latter is very low in the plant. Therefore, in vitro plant cell cultures have been considered as a potential supply of these chemicals or their precursors. Some monomeric alkaloids can be produced by plant cell cultures, but not on a level feasible for commercialization, despite extensive studies on this plant that deepened the understanding of the TIA biosynthesis and its regulation. In order to analyze the metabolites in C. roseus cell cultures, this chapter presents the method of TIA, carotenoids, and phytosterols analyses. Furthermore, an NMR-based metabolomics approach to study C. roseus cell culture is described.
Nowadays, the pretreatment of wastewater prior to discharge is very important in various industries as the wastewater without any treatment contains high organic pollution loads that would pollute the receiving waterbody and potentially cause eutrophication and oxygen depletion to aquatic life. The reuse of seafood wastewater discharge in microalgae cultivation offers beneficial purposes such as reduced processing cost for wastewater treatment, replenishing ground water basin as well as financial savings for microalgae cultivation. In this paper, the cultivation of Chlorella vulgaris with an initial concentration of 0.01 ± 0.001 g⋅L-1 using seafood sewage discharge under sunlight and fluorescent illumination was investigated in laboratory-scale without adjusting mineral nutrients and pH. The ability of nutrient removal under different lighting conditions, the metabolism of C. vulgaris and new medium as well as the occurrence of auto-flocculation of microalgae biomass were evaluated for 14 days. The results showed that different illumination sources did not influence the microalgae growth, chemical oxygen demand (COD) and biochemical oxygen demand (BOD) significantly. However, the total nitrogen (total-N) and total phosphorus (total-P) contents of microalgae were sensitive to the illumination mode. The amount of COD, BOD, total-N and total-P were decreased by 88%, 81%, 95%, and 83% under sunlight mode and 81%, 74%, 79%, and 72% under fluorescent illumination, respectively. Furthermore, microalgae were auto-flocculated at the final days of cultivation with maximum biomass concentration of 0.49 ± 0.01 g⋅L-1, and the pH value had increased to pH 9.8 ± 0.1 under sunlight illumination.
Various studies showed that the suppression of α-glucosidase activity can impede the glucose absorption in our body, and therefore, it can be used to treat type 2 diabetes. Hence, the compounds with anti-α-glucosidase have gained considerable attention because of their potential application in diabetes treatment. In previous literature studies, these anti-α-glucosidase compounds were extracted from plants and fungus. Less studies are being conducted to identify the anti-α-glucosidase compounds in the microbial community. In this study, 23 marine bacterial strains were screened for their potential to suppress the α-glucosidase activity. The highest inhibitory activity was exhibited by isolated L06 which was identified as Oceanimonas smirnovii EBL6. The cultivation conditions, such as temperature and pH, were optimized to increase the production of α-glucosidase inhibitors by Oceanimonas smirnovii EBL6 strain. The result findings showed that the highest yield of α-glucosidase inhibitors can be obtained at the culture time of 120 h, fermentation temperature of 30 °C, and pH 4.6. Under these conditions, the inhibitory activity of α-glucosidase can reach 81%. The IC50 of n-butanol extract was 13.89 μg/ml, while standard acarbose was 31.16 μg/ml. Overall, these findings suggest that Oceanimonas smirnovii produces α-glucosidase inhibitors and could been applied in the biochemical and medicinal fields in the future.
Xylanase enzyme degrades linear polysaccharide β-1,4 xylan and the hemicellulose of the plant cell wall. There is a growing demand in finding a cost-effective alternative for industrial scale production of xylanase with high purity for pharmaceutical applications. In this study, an alcohol/salt aqueous biphasic system (ABS) was adopted to recover xylanase from the Bacillus subtilis fermentation broth. The effects of several ABS parameters such as types and concentrations of alcohols and salts (i.e., sulphate, phosphate, and citrate), amount of crude loading and pH of the system on the recovery of xylanase were investigated. Partition coefficient of xylanase (KE), selectivity (S) and yield (YT) of xylanase in top phase of the ABS were measured. Highest KE (6.58 ± 0.05) and selectivity (4.84 ± 0.33) were recorded in an ABS of pH 8 composed of 26% (w/w) 1-propanol, 18% (w/w) ammonium sulphate. High YT of 71.88% ± 0.15 and a purification fold (PFT) of 5.74 ± 0.33 were recorded with this optimum recovery of xylanase using alcohol/salt ABS. The purity of xylanase recovered was then qualitatively verified with sodium dodecyl sulphate (SDS) gel electrophoresis. The SDS profile revealed the purified xylanase was successfully obtained in the top phase of the one-step 1-propanol/sulphate ABS with a distinct single band.
The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture.
Hematopoietic stem cells- (HSCs-) based therapy requires ex vivo expansion of HSCs prior to therapeutic use. However, ex vivo culture was reported to promote excessive production of reactive oxygen species (ROS), exposing HSCs to oxidative damage. Efforts to overcome this limitation include the use of antioxidants. In this study, the role of Hibiscus sabdariffa L. (Roselle) in maintenance of cultured murine bone marrow-derived HSCs was investigated. Aqueous extract of Roselle was added at varying concentrations (0-1000 ng/mL) for 24 hours to the freshly isolated murine bone marrow cells (BMCs) cultures. Effects of Roselle on cell viability, reactive oxygen species (ROS) production, glutathione (GSH) level, superoxide dismutase (SOD) activity, and DNA damage were investigated. Roselle enhanced the survival (P < 0.05) of BMCs at 500 and 1000 ng/mL, increased survival of Sca-1(+) cells (HSCs) at 500 ng/mL, and maintained HSCs phenotype as shown from nonremarkable changes of surface marker antigen (Sca-1) expression in all experimental groups. Roselle increased (P < 0.05) the GSH level and SOD activity but the level of reactive oxygen species (ROS) was unaffected. Moreover, Roselle showed significant cellular genoprotective potency against H2O2-induced DNA damage. Conclusively, Roselle shows novel property as potential supplement and genoprotectant against oxidative damage to cultured HSCs.
Kenaf (Hibiscus cannabinus L.) is one of the important species of Hibiscus cultivated for fiber. Availability of homozygous parent lines is prerequisite to the use of the heterosis effect reproducible in hybrid breeding. The production of haploid plants by anther culture followed by chromosome doubling can be achieved in short period compared with inbred lines by conventional method that requires self pollination of parent material. In this research, the effects of the microspore developmental stage, time of flower collection, various pretreatments, different combinations of hormones, and culture condition on anther culture of KB6 variety of Kenaf were studied. Young flower buds with immature anthers at the appropriate stage of microspore development were sterilized and the anthers were carefully dissected from the flower buds and subjected to various pretreatments and different combinations of hormones like NAA, 2,4-D, Kinetin, BAP, and TDZ to induce callus. The best microspore development stage of the flower buds was about 6-8 mm long collected 1-2 weeks after flower initiation. At that stage, the microspores were at the uninucleate stage which was suitable for culture. The best callus induction frequency was 90% in the optimized semisolid MS medium fortified with 3.0 mg/L BAP + 3.0 mg/L NAA.
An optimized cultivation condition is needed to maximize the functional green fluorescent protein (GFP) production. Six process variables (agitation rate, temperature, initial medium pH, concentration of inducer, time of induction, and inoculum density) were screened using the fractional factorial design. Three variables (agitation rate, temperature, and time of induction) exerted significant effects on functional GFP production in E. coli shake flask cultivation and were optimized subsequently using the Box-Behnken design. An agitation rate of 206 rpm at 31°C and induction of the protein expression when the cell density (OD(600nm)) reaches 1.04 could enhance the yield of functional GFP production from 0.025 g/L to 0.241 g/L, which is about ninefold higher than the unoptimized conditions. Unoptimized cultivation conditions resulted in protein aggregation and hence reduced the quantity of functional GFP. The model and regression equation based on the shake flask cultivation could be applied to a 2-L bioreactor for maximum functional GFP production.
This study was undertaken in order to identify the best culture strategy to expand and osteogenic differentiation of human bone marrow stem cells (hBMSCs) for subsequent bone tissue engineering. In this regard, the experiment was designed to evaluate whether it is feasible to bypass the expansion phase during hBMSCs differentiation towards osteogenic lineages by early induction, if not identification of suitable culture media for enhancement of hBMSCs expansion and osteogenic differentiation. It was found that introduction of osteogenic factors in alpha-minimum essential medium (αMEM) during expansion phase resulted in significant reduction of hBMSCs growth rate and osteogenic gene expressions. In an approach to identify suitable culture media, the growth and differentiation potential of hBMSCs were evaluated in αMEM, F12:DMEM (1:1; FD), and FD with growth factors. It was found that αMEM favors the expansion and osteogenic differentiation of hBMSCs compared to that in FD. However, supplementation of growth factors in FD, only during expansion phase, enhances the hBMSCs growth rate and significantly up-regulates the expression of CBFA-1 (the early markers of osteogenic differentiation) during expansion, and, other osteogenic genes at the end of induction compared to the cells in αMEM and FD. These results suggested that the expansion and differentiation phase of the hBMSCs should be separately and carefully timed. For bone tissue engineering, supplementation of growth factors in FD only during the expansion phase was sufficient to promote hBMSCs expansion and differentiation, and preferably the most efficient culture condition.
Agitation speed was found to influence the tannase production and fungal growth of Aspergillus niger FETL FT3. The optimal agitation speed was at 200 rpm which produced 1.41 U/ml tannase and 3.75 g/l of fungal growth. Lower or higher agitation speeds than 200 rpm produced lower enzyme production and fungal growth. Based on the SEM and TEM micrograph observation, there was a significant correlation between agitation speed and the morphology of the fungal mycelia. The results revealed an increase of the enzyme production with the change of the fungal growth morphology from filamentous to pelleted growth forms. However, the exposure to higher shear stress with an increasing agitation speed of the shaker also resulted in lower biomass yields as well as enzyme production.
Induction strategies for the periplasmic production of recombinant human IFN-alpha2b (interferon-alpha2b) by recombinant Escherichia coli Rosetta-gami 2(DE3) were optimized in shake-flask cultures using response surface methodology based on the central composite design. The factors included in the present study were induction point, which related to the attenuance of the cell culture, IPTG (isopropyl beta-D-thiogalactoside) concentration and induction temperature. Second-order polynomial models were used to correlate the abovementioned factors to soluble periplasmic IFN-alpha2b formation and percentage of soluble IFN-alpha2b translocated to the periplasmic space of E. coli. The models were found to be significant and subsequently validated. The proposed induction strategies consisted of induction at an attenuance of 4 (measured as D600), IPTG concentration of 0.05 mM and temperature of 25 degrees C. The optimized induction strategy reduced inclusion-body formation as evidenced by electron microscopy and yielded 323.8 ng/ml of IFN-alpha2b in the periplasmic space with translocation of 74% of the total soluble product. In comparison with the non-optimized condition, soluble periplasmic production and the percentage of soluble IFN-alpha2b translocated to the periplasmic space obtained in optimized induction strategies were increased by approx. 20-fold and 1.4-fold respectively.
Dendritic cells (DC) are professional antigen presenting cells of the immune system. Through the use of DC vaccines (DC after exposure to tumour antigens), cryopreserved in single-use aliquots, an attractive and novel immunotherapeutic strategy is available as an option for treatment. In this paper we describe an in vitro attempt to scale-up production of clinical-grade DC vaccines from leukemic cells. Blast cells of two relapsed AML patients were harvested for DC generation in serum-free culture medium containing clinical-grade cytokines GM-CSF, IL-4 and TNF-alpha. Cells from patient 1 were cultured in a bag and those from patient 2 were cultured in a flask. The numbers of seeding cells were 2.24 x 10(8) and 0.8 x 10(8), respectively. DC yields were 10 x 10(6) and 29.8 x 10(6) cells, giving a conversion rate of 4.7% and 37%, respectively. These DC vaccines were then cryopreserved in approximately one million cells per vial with 20% fresh frozen group AB plasma and 10% DMSO. At 12 months and 21 months post cryopreservation, these DC vaccines were thawed, and their sterility, viability, phenotype and functionality were studied. DC vaccines remained sterile up to 21 months of storage. Viability of the cryopreserved DC in the culture bag and flask was found to be 50% and 70% at 12 months post cryopreservation respectively; and 48% and 67% at 21 months post cryopreservation respectively. These DC vaccines exhibited mature DC surface phenotypic markers of CD83, CD86 and HLA-DR, and negative for haemopoietic markers. Mixed lymphocyte reaction (MLR) study showed functional DC vaccines. These experiments demonstrated that it is possible to produce clinical-grade DC vaccines in vitro from blast cells of leukemic patients, which could be cryopreserved up to 21 months for use if repeated vaccinations are required in the course of therapy.
Dendritic cells (DC) are efficient and potent antigen-presenting cells. Pilot clinical trials indicated that DC loaded with tumour antigen could induce tumour-specific immune responses in various cancers including B-cell lymphoma, melanoma and prostate cancer. Owing to extensively low number of DC in the blood circulation, a variety of sources have been used to generate DC including monocytes, CD34+ stem cells and even with leukaemic blast cells. We demonstrate here a simple method to generate DC from acute myeloid leukaemia (AML) cells and monocytes from healthy donor or remission samples. AML cells or monocytes were cultured in RPMI 1640 media supplemented with foetal bovine serum or autologous serum where possible and different combinations of cytokines GM-CSF, IL-4 and TNF-alpha. The generated DC were evaluated for their morphology by phase contrast microscopy and May Grunwald Giemsa staining. Viability of cells was determined by trypan blue dye exclusion. Percentage of yields and immunophenotypes were carried out by flow cytometry. We found that cultured AML cells and monocytes developed morphological and immuno-phenotypic characteristics of DC. Monocytes are better than AML blast in generating DC and serve as a ready source for dendritic cell vaccine development.
Treatment of osteoarthritis (OA) is still a major clinical challenge due to the limited inherent healing capacity of cartilage. Recent studies utilising stem cells suggest that the therapeutic benefits of these cells are mediated through the paracrine mechanism of bioactive molecules. The present study evaluates the regenerative effect of stem cells from human exfoliated deciduous teeth (SHED) conditioned medium (CM) on OA chondrocytes. The CM was collected after the SHED were cultured in serum-free medium (SFM) for 48 or 72 h and the cells were characterised by the expression of MSC and pluripotency markers. Chondrocytes were stimulated with interleukin-1β and treated with the CM. Subsequently, the expression of aggrecan, collagen type 2 (COL 2), matrix metalloproteinase-13 (MMP-13), nuclear factor-kB (NF-kB) and the level of inflammatory and anti-inflammatory markers were evaluated. SHED expressed mesenchymal stromal cell surface proteins but were negative for haematopoietic markers. SHED also showed protein expression of NANOG, OCT4 and SOX2 with differential subcellular localisation. Treatment of OA chondrocytes with CM enhanced anti-inflammation compared to control cells treated with SFM. Furthermore, the expression of MMP-13 and NF-kB was significantly downregulated in stimulated chondrocytes incubated in CM. The study also revealed that CM increased the expression of aggrecan and COL 2 in OA chondrocytes compared to SFM control. Both CM regenerate extracellular matrix proteins and mitigate increased MMP-13 expression through inhibition of NF-kB in OA chondrocytes due to the presence of bioactive molecules. The study underscores the potential of CM for OA treatment.
A Pichia pastoris transformant carrying the cutinase cDNA of Glomerella cingulata was over-expressed in a 5L bioreactor (2.0L working volume) under fed-batch conditions. Bioreactor experiments rely on varying selected parameters in repeated rounds of optimisation: here these included duration of induction, pH and temperature. Highest cell densities (320gL(-1) wet cell weight) with a cutinase production of 3800mgL(-1) and an activity of 434UmL(-1) were achieved 24h after induction with methanol in basal salt medium (at pH 5 and 28°C). Characterisation of the cutinase showed that it was stable between pH 6 and pH 11, had an optimum pH of 8.0 and retained activity for 30min at 50°C (optimum temperature 25°C).The preferred substrates of G. cingulata cutinase were the medium- to long-chain ρ-nitrophenyl esters of ρ-nitrophenylcaprylate (C8), ρ-nitrophenyllaurate (C12) and ρ-nitrophenylmyristate (C14), with the highest catalytic efficiency, kcat/Km of 7.7±0.7mM(-1)s(-1) for ρ-nitrophenylcaprylate. Microscopic analyses showed that the G. cingulata cutinase was also capable of depolymerising the high molecular weight synthetic polyester, polyethylene terephthalate.
Stem cells isolated from dental pulp possess the capacity for self-renewal and the potential for multi-lineage differentiation. However, dental pulp stem cells have different characteristics in terms of their culture conditions. The success of stem cells culture is governed by its micro-environmental niche. Therefore, we studied the effects of culture niche on long-term expansion of dental pulp stem cells in terms of cell morphology, growth kinetics, senescence pattern, cell surface marker expression differentiation capacity, and seeding plating density of dental pulp stem cells in four different, widely used media composition Among the various basal media tested, α-minimum essential media and knock out-minimum essential media supplemented with 10% fetal bovine serum were found to be the most optimal media composition in preserving the phenotypic characteristics and differentiation potential for prolonged periods as compared with DMEM-F12 and DMEM-LG. Plating density has been shown to affect overall yield. As a conclusion, the adoption of an appropriate culture system significantly improved cell yield, thus enabling the attainment of sufficient yields for therapeutic applications economizing in terms of cost of production and minimizing seeding cell density for maximum yield.
We isolated fifty-two strains from the marine aquaculture ponds in Malaysia that were evaluated for their lipid production and ammonium tolerance and four isolates were selected as new ammonium tolerant microalgae with high-lipid production: TRG10-p102 Oocystis heteromucosa (Chlorophyceae); TRG10-p103 and TRG10-p105 Thalassiosira weissflogii (Bacillariophyceae); and TRG10-p201 Amphora coffeiformis (Bacillariophyceae). Eicosapentenoic acid (EPA) in three diatom strain was between 2.6 and 18.6 % of total fatty acids, which were higher than in O. heteromucosa. Only A. coffeiformi possessed arachidonic acid. Oocystis heteromucosa naturally grew at high ammonium concentrations (1.4-10 mM), whereas the growth of the other strains, T. weissflogii and A. coffeiformi, were visibly inhibited at high ammonium concentrations (>1.4 mM-NH4). However, two strains of T. weissflogii were able to grow at up to 10 mM-NH4 by gradually acclimating to higher ammonium concentrations. The ammonium tolerant strains, especially T. weissflogii which have high EPA contents, were identified as a valuable candidate for biomass production utilizing NH4-N media, such as ammonium-rich wastewater.
Bio-hydrogen production from wastewater using sludge as inoculum is a sustainable approach for energy production. This study investigated the influence of initial pH and temperature on bio-hydrogen production from dairy wastewater using pretreated landfill leachate sludge (LLS) as an inoculum. The maximum yield of 113.2 ± 2.9 mmol H2/g chemical oxygen demand (COD) (12.8 ± 0.3 mmol H2/g carbohydrates) was obtained at initial pH 6 and 37 °C. The main products of volatile fatty acids were acetate and butyrate with the ratio of acetate:butyrate was 0.4. At optimum condition, Gibb's free energy was estimated at -40 kJ/mol, whereas the activation enthalpy and entropy were 65 kJ/mol and 0.128 kJ/mol/l, respectively. These thermodynamic quantities suggest that bio-hydrogen production from dairy wastewater using pretreated LLS as inoculum was effective and efficient. In addition, genomic and bioinformatics analyses were performed in this study.
Tissue engineering approaches often require expansion of cell numbers in vitro to accelerate tissue regenerative processes. Although several studies have used this technique for therapeutic purposes, a major concern involving the use of isolated chondrocyte culture is the reduction of extracellular matrix (ECM) protein expressed due to the transfer of cells from the normal physiological milieu to the artificial 2D environment provided by the cell culture flasks. To overcome this issue, the use of alginate hydrogel beads as a substrate in chondrocyte cultures has been suggested. However, the resultant characteristics of cells embedded in this bead is elusive. To elucidate this, a study using chondrocytes isolated from rabbit knee articular cartilage expanded in vitro as monolayer and chondrocyte-alginate constructs was conducted. Immunohistochemical evaluation and ECM distribution was examined with or without transforming growth factor (TGF-β1) supplement to determine the ability of cells to express major chondrogenic proteins in these environments. Histological examination followed by transmission electron microscopy and scanning electron microscopy was performed to determine the morphology and the ultrastructural characteristics of these cells. Results demonstrated a significant increase in glycosaminoglycan/mg protein levels in chondrocyte cultures grown in alginate construct than in monolayer cultures. In addition, an abundance of ECM protein distribution surrounding chondrocytes cultured in alginate hydrogel was observed. In conclusion, the current study demonstrates that the use of alginate hydrogel beads in chondrocyte cultures with or without TGF-β1 supplement provided superior ECM expression than monolayer cultures.
The clinical application of human bone marrow derived multipotent mesenchymal stromal cells (MSC) requires expansion, cryopreservation, and transportation from the laboratory to the site of cell implantation. The cryopreservation and thawing process of MSCs may have important effects on the viability, growth characteristics and functionality of these cells both in vitro and in vivo. More importantly, MSCs after two rounds of cryopreservation have not been as well characterized as fresh MSCs from the transplantation perspective. The objective of this study was to determine if the effect of successive cryopreservation of pooled MSCs during the exponential growth phase could impair their morphology, phenotype, gene expression, and differentiation capabilities. MSCs cryopreserved at passage 3 (cell bank) were thawed and expanded up to passage 4 and cryopreserved for the second time. These cells (passive) were then thawed and cultured up to passage 6, and, at each passage MSCs were characterized. As control, pooled passage 3 cells (active) after one round of cryopreservation were taken all the way to passage 6 without cryopreservation. We determined the growth rate of MSCs for both culture conditions in terms of population doubling number (PDN) and population doubling time (PDT). Gene expression profiles for pluripotency markers and tissue specific markers corresponding to neuroectoderm, mesoderm and endoderm lineages were also analyzed for active and passive cultures of MSC. The results show that in both culture conditions, MSCs exhibited similar growth properties, phenotypes and gene expression patterns as well as similar differentiation potential to osteo-, chondro-, and adipo-lineages in vitro. To conclude, it appears that successive or multiple rounds of cryopreservation of MSCs did not alter the fundamental characteristics of these cells and may be used for clinical therapy.