METHODS: In this study, plasma miRNA profiles from eight early-stage breast cancer patients and nine age-matched (± 2 years) healthy controls were characterized by miRNA array-based approach, followed by differential gene expression analysis, Independent T-test and construction of Receiver Operating Characteristic (ROC) curve to determine the capability of the assays to discriminate between breast cancer and the healthy control.
RESULTS: Based on the 372-miRNAs microarray profiling, a set of 40 differential miRNAs was extracted regarding to the fold change value at 2 and above. We further sub grouped 40 miRNAs of breast cancer patients that were significantly expressed at 2-fold change and higher. In this set, we discovered that 24 miRNAs were significantly upregulated and 16 miRNAs were significantly downregulated in breast cancer patients, as compared to the miRNA expression of healthy subjects. ROC curve analysis revealed that seven miRNAs (miR-125b-5p, miR-142-3p, miR-145-5p, miR-193a-5p, miR-27b-3p, miR-22-5p and miR-423-5p) had area under curve (AUC) value > 0.7 (AUC p-value < 0.05). Overlapping findings from differential gene expression analysis, ROC analysis, and Independent T-Test resulted in three miRNAs (miR-27b-3p, miR-22-5p, miR-145-5p). Cohen's effect size for these three miRNAs was large with d value are more than 0.95.
CONCLUSION: miR-27b-3p, miR-22-5p, miR-145-5p could be potential biomarkers to distinguish breast cancer patients from healthy controls. A validation study for these three miRNAs in an external set of samples is ongoing.
.
METHODS: We used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity.
RESULTS: Protein-truncating variants in 5 genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (BARD1, RAD51C, RAD51D, and TP53) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in ATM and CHEK2, odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in BARD1, BRCA1, BRCA2, PALB2, RAD51C, and RAD51D, odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in ATM, CHEK2, and TP53 were associated with a risk of breast cancer overall with a P value of less than 0.001. For BRCA1, BRCA2, and TP53, missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants.
CONCLUSIONS: The results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.).
RESULTS: In this study we generated Whole Exome Sequencing (WES), Reduced Representation Bisulfite Sequencing (RRBS) and RNA sequencing (RNA-seq) data from samples with known mixtures of mouse and human DNA or RNA and from a cohort of human breast cancers and their derived PDTXs. We show that using an In silico Combined human-mouse Reference Genome (ICRG) for alignment discriminates between human and mouse reads with up to 99.9% accuracy and decreases the number of false positive somatic mutations caused by misalignment by >99.9%. We also derived a model to estimate the human DNA content in independent PDTX samples. For RNA-seq and RRBS data analysis, the use of the ICRG allows dissecting computationally the transcriptome and methylome of human tumour cells and mouse stroma. In a direct comparison with previously reported approaches, our method showed similar or higher accuracy while requiring significantly less computing time.
CONCLUSIONS: The computational pipeline we describe here is a valuable tool for the molecular analysis of PDTXs as well as any other mixture of DNA or RNA species.
METHODS: The MassARRAY genotyping was conducted in 1,394 Chinese, 406 Malay and 310 Indian breast cancer cases and 1,071 Chinese, 167 Malay and 255 Indian healthy controls. The association of individual variant with breast cancer risk was analyzed using logistic regression model adjusted for ethnicity, age and family history.
RESULTS: Our study confirmed BRCA2 p.Ile3412Val is presented in >2% of unaffected women and is likely benign, and BRCA2 p.Ala1996Thr which is predicted to be likely pathogenic by in-silico models is presented in 2% of healthy Indian women suggesting that it may not be associated with breast cancer risk. Single-variant analysis suggests that BRCA1 p.Arg762Ser may be associated with breast cancer risk (OR = 7.4; 95% CI, 0.9-62.3; p = 0.06).
CONCLUSIONS: Our study shows that BRCA2 p.Ile3412Val and p.Ala1996Thr are likely benign and highlights the need for population-specific studies to determine the likely functional significance of population-specific variants. Our study also suggests that BRCA1 p.Arg762Ser may be associated with increased risk of breast cancer but other methods or larger studies are required to determine a more precise estimate of breast cancer risk.
METHODS: Of these 279 variants, data were obtained for 228 from GWAS conducted within the Asian Breast Cancer Consortium (24,206 cases and 24,775 controls) and the Breast Cancer Association Consortium (122,977 cases and 105,974 controls of European ancestry). Meta-analyses were conducted to combine the results from these two datasets.
FINDINGS: Of those 228 variants, an association was observed for 12 variants in 10 genes at a Bonferroni-corrected threshold of P breast cancer risk, we found 14 variants showing an association. Our findings warrant further functional investigation of these variants. FUND: National Institutes of Health.
METHODS: We included 12,595 invasive BC cases and 12,884 controls for the analysis of rs671 and BC risk, and 2,849 invasive BC cases and 3,680 controls for the analysis of the gene-environment interaction between rs671 and alcohol intake for BC risk. The pooled odds ratios (OR) with 95% confidence intervals (CI) associated with rs671 and its interaction with alcohol intake for BC risk were estimated using logistic regression models.
RESULTS: The Lys/Lys genotype of rs671 was associated with increased BC risk (OR = 1.16, 95% CI 1.03-1.30, p = 0.014). According to tumor characteristics, the Lys/Lys genotype was associated with estrogen receptor (ER)-positive BC (OR = 1.19, 95% CI 1.05-1.36, p = 0.008), progesterone receptor (PR)-positive BC (OR = 1.19, 95% CI 1.03-1.36, p = 0.015), and human epidermal growth factor receptor 2 (HER2)-negative BC (OR = 1.25, 95% CI 1.05-1.48, p = 0.012). No evidence of a gene-environment interaction was observed between rs671 and alcohol intake (p = 0.537).
CONCLUSION: This study suggests that the Lys/Lys genotype confers susceptibility to BC risk among women of Asian ancestry, particularly for ER-positive, PR-positive, and HER2-negative tumor types.
MATERIALS AND METHODS: A total of 53 paired tissue samples from breast cancer patients were frozen-sectioned to characterize the tumour and normal tissues. Only tissues with 80% tumour cells were used in this study. For confirmation, Q-PCR was used to determine the HER-2/neu DNA amplification.
RESULTS: We found 20/53 (37.7%) of the tumour tissues to be positive for HER-2/neu protein overexpression using IHC. Out of these twenty, only 9/53 (17%) cases were in agreement with the Q-PCR results. The concordance rate between IHC and Q-PCR was 79.3%. Approximately 20.7% of positive IHC cases showed no HER-2/neu gene amplification using Q-PCR.
CONCLUSION: In conclusion, IHC can be used as an initial screening method for detection of the HER-2/neu protein overexpression. Techniques such as Q-PCR should be employed to verify the IHC results for uncertain cases as well as determination of HER-2/neu gene amplification.