With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review.
Matched MeSH terms: Bacteria; Bacterial Vaccines; Drug Resistance, Bacterial
Research on renewable energy from microalgae has led to a growing interest in porous substrate photobioreactors, but their widespread adoption is currently limited to pure microalgal biofilm cultures. The behavior of microalgal-bacterial biofilms immobilized on microporous substrates remains as a research challenge, particularly in uncovering their mutualistic interactions in environment enriched with dissolved organic matter. Therefore, this study established a novel culture platform by introducing microalgal-derived bio-coating that preconditioned hydrophilic polyvinylidene fluoride membranes for the microalgal-bacterial biofilm growth of freshwater microalgae, Chlorella vulgaris ESP 31 and marine microalgae, Cylindrotheca fusiformis with bacteria, Escherichia coli. In the attached co-culture mode, the bio-coating we proposed demonstrated the ability to enhance microalgal growth for both studied species by a range of 2.5 % to 19 % starting from day 10 onwards. Additionally, when compared to co-culture on uncoated membranes, the bio-coating exhibited a significant bacterial growth promotion effect, increasing bacterial growth by at least 2.35 times for the C. vulgaris-E. coli co-culture after an initial adaptation phase. A significant increase of at least 72 % in intracellular biochemical compounds (including chlorophyll, polysaccharides, proteins, and lipids) was observed within just five days, primarily due to the high concentration of pre-coated organic matter, mainly sourced from the internal organic matter (IOM) of C. fusiformis. Higher accumulation of organic compounds in the bio-coating indirectly triggers a competition between microalgae and bacteria which potentially stimulate the production of additional intra-/extra-organic substances as a defensive response. In short, insight gained from this study may represent a paradigm shift in the ways that symbiotic interactions are promoted to increase the yield of specific bio-compounds with the presence of bio-coating.
Discovering novel bacterial strains might be the link to unlocking the value in lignocellulosic bio-refinery as we strive to find alternative and cleaner sources of energy. Bacteria display promise in lignocellulolytic breakdown because of their innate ability to adapt and grow under both optimum and extreme conditions. This versatility of bacterial strains is being harnessed, with qualities like adapting to various temperature, aero tolerance, and nutrient availability driving the use of bacteria in bio-refinery studies. Their flexible nature holds exciting promise in biotechnology, but despite recent pointers to a greener edge in the pretreatment of lignocellulose biomass and lignocellulose-driven bioconversion to value-added products, the cost of adoption and subsequent scaling up industrially still pose challenges to their adoption. However, recent studies have seen the use of co-culture, co-digestion, and bioengineering to overcome identified setbacks to using bacterial strains to breakdown lignocellulose into its major polymers and then to useful products ranging from ethanol, enzymes, biodiesel, bioflocculants, and many others. In this review, research on bacteria involved in lignocellulose breakdown is reviewed and summarized to provide background for further research. Future perspectives are explored as bacteria have a role to play in the adoption of greener energy alternatives using lignocellulosic biomass.
Pseudomonas species are one of the most threatening fish pathogens which reside a wide range of environments. In this study, the dominant bacteria were isolated from diseased Malaysian mahseer (Tor tambroides) and tentatively named CM-01. It was identified as Pseudomonas koreensis based on its biochemical, morphological, genetic and physiological information. Its pathogenicity was found to be correlated with twelve virulence genes identified including iron uptake, protease, acylhomoserine lactone synthase gacS/gacA component regulation system, type IV secretion system, hydrogen cyanide production, exolysin, alginate biosynthesis, flagella and pili. The median lethal dose (LD50) for the CM-01 isolate on Malaysian mahseer was documented at 5.01 × 107 CFU/mL. The experimental infection revealed that CM-01 led to significant histological lesions in the fish, ultimately resulting in death. These lesions comprise necrosis, tissue thickening and aggregation. Drug sensitivity tests had shown its susceptibility to beta-lactam combination agents and further suggest its drug of choice. Its growing features had shown its growth at optimal temperature and pH. To the best of our knowledge, this is the first report of P. koreensis linked to diseased T. tambroides. STATEMENT OF RELEVANCE: In this research, a novel strain of Pseudomonas koreensis, CM-01 was isolated from diseased T. tambroides for the first time. The antimicrobial susceptibility, pathogenicity, virulence genes and growth characteristics of CM-01 were studied. These findings established a scientific foundation for the recognition of P. koreensis and the management of fish infections caused by this pathogen.
Weedy rice is a major problem in paddy fields around the world. It is well known that weedy rice appears to grow faster and mature earlier than cultivated rice. It is possible that differences in the root microbial genetics are correlated with this characteristic. This study incorporated 16S rRNA amplicon sequencing to study the microbial composition in the rhizosphere and endosphere of rice root. No significant difference was found between the microbiota associated with weedy and cultivated rice lines grown in the same field. It was found that the endosphere had less microbial diversity compared to the rhizosphere. The major groups of bacteria found in the endosphere are from the phylum Proteobacteria, Myxococcota, Chloroflexota, and Actinobacteria. In addition, by analyzing the microbiome of japonica rice grown in the field in a temperate climate, we found that despite differences in genotype and location, some bacterial taxa were found to be common and these members of the putative rice core microbiome can also be detected by in situ hybridization. The delineation of a core microbiome in the endosphere of rice suggests that these bacterial taxa might be important in the life cycle of a wide range of rice types.
Mass microalgal-bacterial co-cultures have come to the fore of applied physiological research, in particularly for the optimization of high-value metabolite from microalgae. These co-cultures rely on the existence of a phycosphere which harbors unique cross-kingdom associations that are a prerequisite for the cooperative interactions. However, detailed mechanisms underpinning the beneficial bacterial effects onto microalgal growth and metabolic production are rather limited at the moment. Hence, the main purpose of this review is to shed light on how bacteria fuels microalgal metabolism or vice versa during mutualistic interactions, building upon the phycosphere which is a hotspot for chemical exchange. Nutrients exchange and signal transduction between two not only increase the algal productivity, but also facilitate in the degradation of bio-products and elevate the host defense ability. Main chemical mediators such as photosynthetic oxygen, N-acyl-homoserine lactone, siderophore and vitamin B12 were identified to elucidate beneficial cascading effects from the bacteria towards microalgal metabolites. In terms of applications, the enhancement of soluble microalgal metabolites is often associated with bacteria-mediated cell autolysis while bacterial bio-flocculants can aid in microalgal biomass harvesting. In addition, this review goes in depth into the discussion on enzyme-based communication via metabolic engineering such as gene modification, cellular metabolic pathway fine-tuning, over expression of target enzymes, and diversion of flux toward key metabolites. Furthermore, possible challenges and recommendations aimed at stimulating microalgal metabolite production are outlined. As more evidence emerges regarding the multifaceted role of beneficial bacteria, it will be crucial to incorporate these findings into the development of algal biotechnology.
Conventional techniques to remove Fe impurities in kaolin typically involve high environmental impact and cost. Alternative methods have been focused on the use of bioleaching where Fe in kaolin is reduced with microorganisms. Early results established a noticeable effect of the bacteria on the redox state of Fe, but knowledge gaps persist such as details on the bacterial-kaolin interactions during attachment of bacteria onto kaolin surface, the metabolites produced by bacteria, and changes in Fe(II)/Fe(III) ion equilibria in solution. To bridge these gaps, this study was conducted to determine the detailed physicochemical changes in bacteria and kaolin during bioleaching through surface, structural, and chemical analysis. Bioleaching experiments were conducted for 10 days where each of the three Bacillus sp. was put in contact (at 9 × 108 CFU) with 20 g of kaolin powder using 200 mL of 10 g/L glucose solution. All samples treated with bacteria showed increasing trends in Fe(III) reduction up until day 6 or 8 followed by a slight decrease towards the end of the ten-day period. Examination of scanning electron microscope (SEM) images suggests that bacterial activity damaged the edges of kaolin particles during bioleaching. Ion chromatography (IC) results showed that during bioleaching, Bacillus sp. produced organic acids such as lactic acid, formic acid, malic acid, acetic acid, and succinic acid. EDS analysis of kaolin before and after bioleaching showed Fe removal efficiencies of up to 65.3%. Analyses of color properties of kaolin before and after bioleaching showed an improvement in whiteness index of up to 13.6%. KEY POINTS: • Dissolution of iron oxides by Bacillus species proven with phenanthroline analysis. • Organic acid type and concentration unique to species detected during bioleaching. • Whiteness index of kaolin is improved after bioleaching.
Nanocellulose (NC) is a natural fiber that can be extracted in fibrils or crystals form from different natural sources, including plants, bacteria, and algae. In recent years, nanocellulose has emerged as a sustainable biomaterial for various medicinal applications including drug delivery systems, wound healing, tissue engineering, and antimicrobial treatment due to its biocompatibility, low cytotoxicity, and exceptional water holding capacity for cell immobilization. Many antimicrobial products can be produced due to the chemical functionality of nanocellulose, such disposable antibacterial smart masks for healthcare use. This article discusses comprehensively three types of nanocellulose: cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), and bacterial nanocellulose (BNC) in view of their structural and functional properties, extraction methods, and the distinctive biomedical applications based on the recently published work. On top of that, the biosafety profile and the future perspectives of nanocellulose-based biomaterials have been further discussed in this review.
The expanding urbanization of coastal areas has led to increased ocean sprawl, which has had both physical and chemical adverse effects on marine and coastal ecosystems. To maintain the health and functionality of these ecosystems, it is imperative to develop effective solutions. One such solution involves the use of biodegradable polymers as bioactive coatings to enhance the bioreceptivity of marine and coastal infrastructures. Our study aimed to explore two main objectives: (1) investigate PHA-degrading bacteria on polymer-coated surfaces and in surrounding seawater, and (2) comparing biofilm colonization between surfaces with and without the polymer coating. We applied poly(3-hydroxybutyrate) [P(3HB)) coatings on concrete surfaces at concentrations of 1% and 6% w/v, with varying numbers of coating cycles (1, 3, and 6). Our findings revealed that the addition of P(3HB) indeed promoted accelerated biofilm growth on the coated surfaces, resulting in an occupied area approximately 50% to 100% larger than that observed in the negative control. This indicates a remarkable enhancement, with the biofilm expanding at a rate roughly 1.5 to 2 times faster than the untreated surfaces. We observed noteworthy distinctions in biofilm growth patterns based on varying concentration and number of coating cycles. Interestingly, treatments with low concentration and high coating cycles exhibited comparable biofilm enhancements to those with high concentrations and low coating cycles. Further investigation into the bacterial communities responsible for the degradation of P(3HB) coatings identified mostly common and widespread strains but found no relation between the concentration and coating cycles. Nevertheless, this microbial degradation process was found to be highly efficient, manifesting noticeable effects within a single month. While these initial findings are promising, it's essential to conduct tests under natural conditions to validate the applicability of this approach. Nonetheless, our study represents a novel and bio-based ecological engineering strategy for enhancing the bioreceptivity of marine and coastal structures.
Objective: To evaluate methanolic, ethanolic, acetone and aqueous extracts from different parts of Eurycoma longifolia (E. longifolia) (leave, stem, and root) for antibacterial activity against Gram-positive and Gram-negative bacteria and to utilize the leaves and stem parts rather than the root, which is already used for male sexual enhancement in Malaysia.
Methods: The study took place in the Laboratory of Molecular Biology of Biotechnology Engineering Department, Malaysia between January 2005 and June 2006. Methanolic, ethanolic, acetone and aqueous extracts of leaves, stems and roots of E. longifolia were investigated for their antibacterial properties using Agar-well diffusion method.
Results: The alcoholic and acetone extracts of the leaves and stem extracts were active on both Gram-positive and Gram-negative bacteria except against 2 strains of Gram-negative bacteria (Escherichia coli and Salmonella typhi). The root extracts had no antibacterial activity against Gram-positive and Gram-negative bacteria tested. Aqueous leaves extract showed antibacterial activity against Staphylococcus aureus and Serratia marscesens.
Conclusion: The alcoholic and acetone extracts from leaves and stems of E. longifolia contain potent antibacterial agent(s). This plant can serve as a potential source of antibacterial compounds.
To better understand salmon GI tract microbial community dynamics in relation to diet, a feeding trial was performed utilising diets with different proportions of fish meal, protein, lipid and energy levels. Salmon gut dysfunction has been associated with the occurrence of casts, or an empty hind gut. A categorical scoring system describing expressed digesta consistency was evaluated in relation to GI tract community structure. Faster growing fish generally had lower faecal scores while the diet cohorts showed minor differences in faecal score though the overall lowest scores were observed with a low protein, low energy diet. The GI tract bacterial communities were highly dynamic over time with the low protein, low energy diet associated with the most divergent community structure. This included transiently increased abundance of anaerobic (Bacteroidia and Clostridia) during January and February, and facultatively anaerobic (lactic acid bacteria) taxa from February onwards. The digesta had enriched populations of these groups in relation to faecal cast samples. The majority of samples (60-86 %) across all diet cohorts were eventually dominated by the genus Aliivibrio. The results suggest that an interaction between time of sampling and diet is most strongly related to community structure. Digesta categorization revealed microbes involved with metabolism of diet components change progressively over time and could be a useful system to assess feeding responses.
Antimicrobial resistance (AMR) threatens the effective prevention and treatment of a wide range of infections. Governments around the world are beginning to devote effort for innovative treatment development to treat these resistant bacteria. Systems biology methods have been applied extensively to provide valuable insights into metabolic processes at system level. Genome-scale metabolic models serve as platforms for constraint-based computational techniques which aid in novel drug discovery. Tools for automated reconstruction of metabolic models have been developed to support system level metabolic analysis. We discuss features of such software platforms for potential users to best fit their purpose of research. In this work, we focus to review the development of genome-scale metabolic models of Gram-negative pathogens and also metabolic network approach for identification of antimicrobial drugs targets.
Although the microbiome of blood-feeding insects serves an integral role in host physiology, both beneficial and pathogenic, little is known of the microbial community of black flies. An investigation, therefore, was undertaken to identify culturable bacteria from one of Malaysia's most common black flies, Simulium tani Takaoka and Davies, using 16S rDNA sequencing, and then evaluate the isolates for antibiotic resistance and virulence genes. A total of 20 isolates representing 11 bacterial species in four genera were found. Five isolates showed β-hemolysis on Columbia agar, and virulence genes were found in three of these isolates. Some degree of resistance to six of the 12 tested antibiotics was found among the isolates. The baseline data from this study suggest rich opportunities for comparative studies exploring the diversity and roles of the microbiome of S. tani and other Southeast Asian black flies.
Microbial fuel cells (MFCs) represent one of the most attractive and eco-friendly technologies that convert chemical bond energy derived from organic matter into electrical power by microbial catabolic activity. This paper presents the use of a H-type MFC involving a novel NAR-2 bacterial consortium consisting of Citrobacter sp. A1, Enterobacter sp. L17 and Enterococcus sp. C1 to produce electricity whilst simultaneously decolourising acid red 27 (AR27) as a model dye, which is also known as amaranth. In this setup, the dye AR27 is mixed with modified P5 medium (2.5 g/L glucose and 5.0 g/L nutrient broth) in the anode compartment, whilst phosphate buffer solution (PBS) pH 7 serves as a catholyte in the cathode compartment. After several electrochemical analyses, the open circuit voltage (OCV) for 0.3 g/L AR27 with 24-h retention time at 30 °C was recorded as 0.950 V, whereas (93%) decolourisation was achieved in 220-min operation. The maximum power density was reached after 48 h of operation with an external load of 300 Ω. Scanning electron microscopy (SEM) analysis revealed the surface morphology of the anode and the bacterial adhesion onto the electrode surface. The results of this study indicate that the decolourisation of AR27 dye and electrical power generation was successfully achieved in a MFC operated by a bacterial consortium. The consortium of bacteria was able to utilise AR27 in a short retention time as an electron acceptor and to shuttle the electrons to the anode surface for bioelectricity generation.
A range of small- to moderate-scale studies of patterns in bacterial biodiversity have been conducted in Antarctica over the last two decades, most suggesting strong correlations between the described bacterial communities and elements of local environmental heterogeneity. However, very few of these studies have advanced interpretations in terms of spatially associated patterns, despite increasing evidence of patterns in bacterial biogeography globally. This is likely to be a consequence of restricted sampling coverage, with most studies to date focusing only on a few localities within a specific Antarctic region. Clearly, there is now a need for synthesis over a much larger spatial to consolidate the available data. In this study, we collated Antarctic bacterial culture identities based on the 16S rRNA gene information available in the literature and the GenBank database (n > 2,000 sequences). In contrast to some recent evidence for a distinct Antarctic microbiome, our phylogenetic comparisons show that a majority (~75 %) of Antarctic bacterial isolates were highly similar (≥99 % sequence similarity) to those retrieved from tropical and temperate regions, suggesting widespread distribution of eurythermal mesophiles in Antarctic environments. However, across different Antarctic regions, the dominant bacterial genera exhibit some spatially distinct diversity patterns analogous to those recently proposed for Antarctic terrestrial macroorganisms. Taken together, our results highlight the threat of cross-regional homogenisation in Antarctic biodiversity, and the imperative to include microbiota within the framework of biosecurity measures for Antarctica.
The fermentation selectivity of a commercial source of a-gluco-oligosaccharides (BioEcolians; Solabia) was investigated in vitro. Fermentation by faecal bacteria from four lean and four obese healthy adults was determined in anaerobic, pH-controlled faecal batch cultures. Inulin was used as a positive prebiotic control. Samples were obtained at 0, 10, 24 and 36 h for bacterial enumeration by fluorescent in situ hybridisation and SCFA analyses. Gas production during fermentation was investigated in non-pH-controlled batch cultures. a-Gluco-oligosaccharides significantly increased the Bifidobacterium sp. population compared with the control. Other bacterial groups enumerated were unaffected with the exception of an increase in the Bacteroides–Prevotella group and a decrease in Faecalibacterium prausnitzii on both a-gluco-oligosaccharides and inulin compared with baseline. An increase in acetate and propionate was seen on both substrates. The fermentation of a-gluco-oligosaccharides produced less total gas at a more gradual rate of production than inulin. Generally, substrates fermented with the obese microbiota produced similar results to the lean fermentation regarding bacteriology and metabolic activity. No significant difference at baseline (0 h) was detected between the lean and obese individuals in any of the faecal bacterial groups studied.
This paper investigates the degradation of polyhydroxyalkanoates and its biofiber composites in both soil and lake environment. Time-dependent changes in the weight loss of films were monitored. The rate of degradation of poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-23 mol% 4HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-9 mol% 3HV-co-19 mol% 4HB)] were investigated. The rate of degradation in the lake is higher compared to that in the soil. The highest rate of degradation in lake environment (15.6% w/w week(-1)) was observed with P(3HB-co-3HV-co-4HB) terpolymer. Additionally, the rate of degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-38 mol% 3HV)] was compared to PHBV biofiber composites containing compatibilizers and empty fruit bunch (EFB). Here, composites with 30% EFB displayed the highest rate of degradation both in the lake (25.6% w/w week(-1)) and soil (15.6% w/w week(-1)) environment.
Acclimation of autohydrogenotrophic denitrifying bacteria using inorganic carbon source (CO(2) and bicarbonate) and hydrogen gas as electron donor was performed in this study. In this regard, activated sludge was used as the seed source and sequencing batch reactor (SBR) technique was applied for accomplishing the acclimatization. Three distinct strategies in feeding of carbon sources were applied: (I) continuous sparging of CO(2), (II) bicarbonate plus continuous sparging of CO(2), and (III) only bicarbonate. The pH-reducing nature of CO(2) showed an unfavorable impact on denitrification rate; however bicarbonate resulted in a buffered environment in the mixed liquor and provided a suitable mean to maintain the pH in the desirable range of 7-8.2. As a result, bicarbonate as the only carbon source showed a faster adaptation, while carbon dioxide as the only carbon source as well as a complementary carbon source added to bicarbonate resulted in longer acclimation period. Adapted hydrogenotrophic denitrifying bacteria, using bicarbonate and hydrogen gas in the aforementioned pH range, caused denitrification at a rate of 13.33 mg NO(3)(-)-N/g MLVSS/h for degrading 20 and 30 mg NO(3)(-)-N/L and 9.09 mg NO(3)(-)-N/g MLVSS/h for degrading 50mg NO(3)(-)-N/L.
Forty-six bacterial strains were isolated from nine different sources in four treatment plants namely Indah Water Konsortium (IWK) sewage treatment plant (STP), International Islamic University Malaysia (IIUM) wastewater treatment plant-1,-2 and -3 to evaluate the bioconversion process in terms of efficient biodegradation and bioseparation. The bacterial strains isolated were found to be 52.2% (24 isolates) and 47.8% (22 isolates) in the IWK and IIUM treatment plants, respectively. The results showed that higher microbial population (9-10 x 10(4) cfu/mL) was observed in the secondary clarifier of IWK treatment plant. Among the isolates, 23 isolates were gram-positive bacillus (GPB) and gram-positive cocci (GPC), 19 isolates were gram-negative bacillus (GNB) and gram-negative cocci (GNC), and the rest were undetermined. Gram-negative cocci (GNC) were not found in the isolates from IWK. A total of 15 bacterial strains were selected for effective and efficient sludge bioconversion. All the strains were tested against sludge (1% total suspended solids, TSS) to evaluate the biosolids production (TSS% content), chemical oxygen demand (COD) removal and filtration rate (filterability test). The strain S-1 (IWK1001) showed lower TSS content (0.8% TSS), maximum COD removal (84%) and increased filterability (1.1 min/10 mL of filtrate) of treated sludge followed by the strains S-11, S-14, S-2, S-15, S-13, S-7, S-8, S-4, S-3, S-6, S-12, S-16, S-17 and S-9. The pH values in the fermentation broth were affected by the bacterial cultures and recorded as well. Effective bioconversion was observed during the first three days of sludge treatment.
Polyunsaturated fatty acids (PUFAs) play an important role in human diet. Despite the wide-ranging importance and benefits from heart health to brain functions, humans and mammals cannot synthesize PUFAs de novo. The primary sources of PUFA are fish and plants. Due to the increasing concerns associated with food security as well as issues of environmental contaminants in fish oil, there has been considerable interest in the production of polyunsaturated fatty acids from alternative resources which are more sustainable, safer, and economical. For instance, marine bacteria, particularly the genus of Shewanella, Photobacterium, Colwellia, Moritella, Psychromonas, Vibrio, and Alteromonas, are found to be one among the major microbial producers of polyunsaturated fatty acids. Recent developments in the area with a focus on the production of polyunsaturated fatty acids from marine bacteria as well as the metabolic engineering strategies for the improvement of PUFA production are discussed.