Tailing sand is the residue mineral from tin extraction that contains between 94% and 99.5% silica, which can be used as moulding sand. It is found in abundance in the Kinta Valley in the state of Perak, Malaysia. Adequate water content and clay in moulding sand are important factors for better strength and
casting quality of products made from tailing sand. Samples of tailing sand were investigated according
to the American Foundrymen Society (AFS) standard. Cylindrical test pieces of Ø50 mm×50 mm in height from various sand-water ratios were compacted by applying three ramming blows of 6666g each using a Ridsdale-Dietert metric standard rammer. The specimens were tested for green compression strength using a Ridsdale-Dietert universal sand strength machine. Before the tests were conducted, moisture content of the tailing sand was measured using a moisture analyser. A mixture bonded with 8% clay possesses higher green compression strength compared to samples bonded with 4% clay. The results also show that in order to achieve maximum green compression strength, the optimum allowable moisture content for mixtures bonded with 8% clay is ranged between 3.75 and 6.5% and for mixtures bonded with 4% clay is 3-5.5%.
At present, soil and mineral based building material such as bricks are one of the main components in building construction in Malaysia. This building material is a direct source of radiation exposure since it contains naturally occurring radioactive materials (NORM). In this study, clay brick samples used were obtained from 7 factories in Selangor and Johore, Malaysia. The activity concentrations of 226 Ra, 232 Th and 40 K in these samples of clay bricks were determined using a comparative method and was analysed using gamma spectrometry with HPGe detector. The mean values of activity concentrations for 226 Ra, 232 Th and 40 K were found to be in the range of 39.04 ± 0.88 Bqkg-1 - 73.61 ± 5.32 Bqkg-1, 43.38 ± 2.60 Bqkg-1 - 73.45 ± 1.51 Bqkg-1, and 381.54 ± 11.39 Bqkg-1 - 699.63 ± 15.82 Bqkg-1, respectively. The radiation hazard of NORM in the samples was estimated by calculating the radium equivalent activity (Raeq), external hazard index (Hex) and internal hazard index (Hin). Radium equivalent activity (Raeq) determined was in the range of 151.90 Bqkg-1 - 194.22 Bqkg-1 which is lower than the limit of 370 Bqkg-1 (equivalent to 1.5 mSvyr-1 ) recommended in the NEA-OECD report in 1979, whereas external hazard index (Hex) and internal hazard index (Hin) were between 0.20 – 0.26 and 0.52 - 0.71 respectively. The annual effective dose rate exposure to a dweller received from the clay bricks was calculated to be in the range of 0.35 ± 0.18 mSvy-1 - 0.43 ± 0.09 mSvy-1.
Radon-222 emanation from selected locally produced samples of building materials, used in Malaysia were measured using the Professional Continuous Radon Monitor Model 1027, which is a patented electronic detecting-junction photodiode sensor to measure the concentration of radon gas. Each sample was placed for 72 hours inside a 3.11 x 10 -2 m 3 sealed container. It was found that the average radon concentration Bqm -3 of air for concrete bricks, concrete brick with cemented coatings, concrete brick with cemented coatings and paint samples were, 303.7 Bq/m 3, 436.6 Bqm -3, and 410.7 Bqm -3, respectively. (Bqm -3 ) for brown clay brick, brown clay brick with cemented coatings, brown clay brick with cemented coatings and paint were 166.5 Bqm -3, 166.5 Bqm -3, and 148 Bqm -3, respectively. (Bqm -3 ) for sample of compact ceramic tile was 0 Bqm -3. The findings show that concrete brick samples are important source of radon emanation, while brown clay brick have been accepted as the recommendation of the U.S. Environmental Protection Agency (EPA), and ceramic tiles had no emanation of radon gas due to their compact surface, or the glazed layer created on the tile surface during the manufacturing process, which blocks radon emanation. A positive correlation between radon emanation and radium content has been observed for both brown clay brick and concrete brick samples whereas a negative correlation for ceramic tile has been observed. Consequently from the findings, in order to reduce radon emanation and radon exposure in house dwellings and in addition to EPA recommendation of sealed cracks and established good ventilation, we recommend concrete walls to be painted and concrete floors to be paved with ceramic tiles.
Synthesis of palm oil based-urethane acrylate (POBUA) resins was carried out by acrylation of epoxidizedpalm oil (EPOP) using acrylic acid in the presence of a catalyst and followed by isocyanation to obtainthe POBUA. Using the monomer as a diluent in the formulation, 4% of photoinitiator and incorporationof organoclay (1-5% wt), nanocomposites were obtained upon UV irradiation. The X-ray DiffractoryXRD study revealed that the nanocomposites obtained were of the exfoliation type. The presence ofthe clay improved the hardness and did not affect the thermal stability. Similarly, it increased the glasstransition temperature Tg but reduced the modulus as the clay content was increased. The improvementof the tensile strength was only obtained when the clay concentration was 5 phr.
Anion clay hydrotalcite MgA1C0 3 with a Mg/A1 molar ratio of 3:1 was synthesized by co-precipitation at room temperature and pressure. The physicochemical properties were evaluated using Powder X-Ray Diffraction (PXRD), Fourier Transform Infrared (FTIR) spectroscopy and Thermogravimetric Analysis (TGA). The efficacy of anion clay hydrotalcite in the removal ofCcf- from aqueous solutions was investigated with respect to contact time, initial concentration, pH, adsorbent dosage and temperature. The Cd2- removal increased with the increased in contact time, adsorbent dosage, pH and initial concentration. Adsorption decreases with increasing initial concentration and temperature, for which the latter is indicative of an exothermic process. The equilibrium adsorption capacity of MgA1C0 3 was evaluated using linear Langmuir and Freundlich isotherms with respect to the separation factor, RL.
Clay has been regarded as very important natural industrial materials. All these industries exploit the properties that clay can be molded into any shape and fired to dry without losing its form. A study was carried out on clay samples from eight sites in the north-eastern part of Peninsular Malaysia. The study was accomplished by using X-ray diffraction (XRD) technique. The x-ray diffraction spectra obtained enable the determination of the lattice spacing associated with the types of clay and nonclay minerals present in the samples. Results of the study shows that the major components of clay minerals present in all samples studied are kaolinite and illite. The presence of kaolinite is confirmed by firing test in which the kaolinite diffraction peaks disappeared upon heating the samples at 600 o C. The presence of non-clay minerals such as quartz, mica, feldspar and chlorite are also observed.
A study on the distribution of Recent Ostracoda in offshore sediment was carried out around the South China Sea. A total of 30 sediment samples were taken from the sampling stations between latitude 1°48’ and 7°25’N and longitude 102°09’ and 105°16’E. From this study, 79 species of ostracods belonging to 16 families and 44 genera were identified. The dominant species was Foveoleberis cypraeoides with 937 individuals obtained. There were 13 to 43 species in total. Diversity Index, H(s), was in the range of 2.1 to 3.3, whereas the dominance values were between 4.4 and 14.7%. Several environmental parameters were measured including depth, temperature and salinity. The range values for each of these parameters are 13-72 m, 25.24-30.06o C and 27.74-34.91 ppt, respectively. The sediment texture in this study area can be categorized as sand, sandy mud, clayey mud, silty mud, silty clay, clayey sand, clayey silt and silty sand. The observations revealed that abundance and diversity of ostracod appeared to be principally controlled by depth. Two faunal assemblages were identified in terms of faunal composition, namely, shallow water (Hemikrithe orientalis, Neomonoceratina iniqua, Stigmatocythere indica, Cytherelloidea leroyi and Neocytheretta snellii) and deep water (Paracypris sp., Alataconcha pterogona, Bythocytheropteron alatum, Keijella paucipunctata and Actinocythereis scutigera). A comparative analysis showed a high degree resemblance between the study area and south-eastern Malay Peninsula (the South China Sea).
Objective: This study examined the influence of visual art therapy techniques in reducing anxiety level
among 4 to 6 years old paediatric dental patients.
Methods: Eleven subjects were selected among 4 to 6 years old paediatric dental patients. The initial
reaction towards dental procedure/treatment was evaluated using Frankl Behavior Rating Scale. The
anxiety level was assessed by using Malay-Modified Child Dental Anxiety Scale (MCDASf
) to measure
a child situational anxiety of pre- and post-treatment. Visual art making activities included free drawing,
clay moulding and collage technique. The participant reaction to dental treatment was assessed by using
Frankl Behavioural Rating Scale for two subsequent independent visits in two weeks interval. Median
and Ordinal Test ranked the variables score of behavioural reaction towards dental treatment and anxiety
level.
Results: Play-doh (PD) subjects could accept dental procedures more if compared to free drawing (FD)
and storytelling by collage (ST) subjects, which has lower post treatment-median scores in Visit 1 and
Visit 2, FD and ST subjects need more time to show positive attitude towards dental treatment.
Conclusion: These findings suggest dental anxiety level of children aged 4 to 6 years old reduced after
the art therapy and play-doh(clay-moulding technique) is the art making activity of choice among 4 to 6
years old paediatric dental patients.
Considering its excellent thermal stability, alkyl phosphonium surfactant: triisobutyl(methyl)phosphonium
(TIBMP) was used in this research as an intercalant for surface
modification of Na+-MMT via ion exchange process forming organomontmorillonite
(OMMT). The OMMT was then used as filler in poly(methyl methacrylate) (PMMA) via
melt intercalation technique. OMMT decomposed at a higher temperature than commercial
alkyammonium modified MMT. Exfoliated and intercalated types of nanocomposites
are obtained from PMMA/OMMTs at low and high content of OMMT loading, depending
on the space of those clay platelets had to disperse in PMMA. The ability of OMMT to
carry a certain load applied in PMMA matrix enhances the tensile strength in all composites.
TIBMP are compatible with PMMA matrix, and significantly improves the tensile
properties of PMMA composites.
Industrial pollution issue and dark colour of carbon black, clay based non black filler are getting more importance for reinforcing elastomer. EPDM-Kaolin composites with various maleated EPDM concentration have been prepared by mixing on a two roll mill. The rheometry data showed the optimum cure time increases with increasing compatibilizer concentration without decreasing torque value indicating that acidic functional groups comes from compatibilizer could retard cure rate and increase the optimum cure time rather than change in the ultimate cure state. As the filler
concentration increases, the edge to edge and face to edge interaction between filler and EPDM increases and the free volume between EPDM molecules is reduced, the storage modulus increases. Moreover, the dynamic mechanical analysis also showed the increase in glass transition temperature with increase in filler concentration due to the inter-tubular diffusion of EPDM inside the clay. It was also observed that with increasing filler concentration, the resistivity and dielectric strength decreases and moreover with increasing compatibilizer concentration the resistivity decreases due to better dispersion of filler helps to build conduction path. The morphological study also revealed that homogeneity of filler dispersion increases with increase in compatibilizer concentration.
An integrated geophysical study was conducted to investigate the subsurface regional structure and the presence of a Quaternary sedimentary basin in the Olak Lempit - Banting area of Selangor, Malaysia. A regional gravity survey and the high resolution reflection seismic were employed to determine the thickness and areal distribution of the alluvial sedimentary basin as well as to investigate the depth and topography of the bedrock in the study area. The sedimentary basin hosts one of the most important coastal alluvial aquifer which was used to cater the shortage of domestic water supply during the worst water crisis that hit the state of Selangor in 1998. The surface geological map shows that in general 70% of the study area is covered by Quaternary deposits of Beruas, Gula and Simpang Formations which overlie the sedimentary bedrock of Kenny Hill Formation. The Beruas Formation consists of mainly clay, sandy clay and peat of Holocene fluviatile-estuarine deposits, whereas the Gula Formation represents Holocene marine to estuarine sediments which mostly consists of clay and minor sand. The Simpang Formation (Pleistocene) is a continental deposit comprising of gravel, sand, clay and silt. The underlying Kenny Hill Formation consists of a monotonous sequence of interbedded shales, mudstones and sandstones. The rock is Carbonaceous in age and it forms an undulating surface topography in the eastern part of the study area. A total of 121 gravity stations were established using a La Coste & Romberg gravity meter and the elevations of most of the stations were determined barometrically using Tiernan-Wallace altimeters. The high resolution seismic reflection using the common mid point (CMP) or roll along technique was carried out using a 24 channel signal enhancement seismograph and high frequency geophones. A total length of about 1.7 km stacked seismic section has been acquired in this survey and a nearby borehole data was used for interpretation. A relative Bouguer anomaly map shows an elongated zone of low gravity anomaly trending approximately NW-SE which is interpreted to be the deposition center of the Quaternary basin. The interpreted gravity profiles running across the central area of the study area show that the basin has thickness varies from tenth to several hundred meters with maximum depth to bedrock of about 275m. A gravity profile which passes through the eastern edge of the basin was modeled with depth to bedrock of about 178m below ground which agrees very well with those obtained from the interpreted seicmic section and borehole data. The stacked seismic section shows several high amplitude parallel to sub-parallel reflection overlying discontinuos and low reflection pattern. Reflections on the eastern part of the section is much shallower than the one observed on the western part which clearly indicates the presence of basinal structure with a total interpreted depth to bedrock of about 200 meters.
Harmful algal blooms (HABs) events have been increasingly reported in the country, not only of the frequency and severity of the events, but also involved more species than previously known. In this paper, a decadal review of HABs events in Malaysia is summarized. Bloom events caused by harmful dinoflagellate species including the shellfish poisoning events were highlighted. Paralytic shellfish poisoning (PSP) is no longer restricted to Sabah coasts and Pyrodnium bahamense. Bloom of Alexandrium minutum was reported for the first time in the Peninsula with six persons hospitalized including one casualty after consuming the contaminated benthic clams. Algal blooms that are associated with incidence of massive fish kills have been reported from both east and west coasts of the Peninsula in conjunction to finfish mariculture loses. The culprits of these bloom events have been identified as the dinoflagellates, Cochlodinium polykrikoides, Neoceratium furca, Prorocentrum minimum, Noctiluca scintillans and a raphidophyte, Chatonella ovata. In this paper, some of these HABs species were characterized morphologically and genetically, including their toxicity. Therefore, with the increase of coastal utilization and eutrophication, prevention, management and mitigation strategies, such as site selection, moving pens, clay spraying should be adopted to minimize the impact of these natural events.
Following rapid technological and industrial development, factories have been equipped with a great deal of machines.
The blend of industrial and residential areas in turn resulted in many environmental problems. In particular, machine
operation causes noise pollution that easily causes physiological and psychological discomfort for the human body thus
makes noise abatement a crucial and urgent issue. In this study, vermiculite functional fillers were added to polyurethane
(PU) foam mixtures in order to form sound absorbent PU foams. The correlations between the contents of functional fillers
and the sound absorption of flexible and rigid PU foams were then examined. The optimal PU foams were combined with
PET/carbon fiber matrices in order to yield the electromagnetic shielding effectiveness. The sound absorption, noise
reduction coefficient (NRC), electromagnetic shielding effectiveness and resilience rate of the composite boards were
finally evaluated. The test results indicated that rigid PU foam composites can reach a sound absorption coefficient of
0.8 while the flexible PU foam composites have higher mechanical properties.
Three forest types were recognized at Chini watershed namely inland, seasonal flood and riverine forests. The soil physico-chemical characteristics from the three forest types were investigated to determine the soil properties variation within a landscape scale. Thirty sampling stations were established, represented by fourteen inland, nine stations in seasonal flood forest and seven in riverine forest. In each station, three soil samples were taken at 0-15 cm depth by using an auger. The study showed 71% of the soil in the inland forest was found to be dominated by clay, 44% of the soil in the seasonal flood forest by clay loam and 42% of the soil in the riverine forest was dominated by silty clay. The pH of all three types of forest studied was acidic and insignificantly different. Organic matter content in the study sites was moderate. The mean of electric conductivity (EC) and cation exchange capacity (CEC) values in the studied soils were low. Based on ANOVA, there were significant differences of the available P and K, K+, Ca2+ and Mg2+ cations and electrical conductivity amongst the three forest types (p<0.05). Cluster analysis showed that the variations of the soil physico-chemical characteristics between the three forest types were low thus indicating that the soil physico-chemical investigated in this study were not the only main contributing factors in floristic variation of the three forest types in Chini watershed.
The Sandakan Formation of the Segama Group is exposed across the Sandakan Peninsular in eastern Sabah. This Upper Miocene part of the Segama Group unconformably overlies the Garinono Formation and is conformably overlain by the Bongaya Formation. This formation was investigated with detailed logging of outcrops and microfossils analysis in order to map the depositional facies and sedimentary environment. This study showed the presence of seven lithofacies: Thick amalgamated sandstone; thin, lenticular interbedded HCS sandstones and mudstone; laminated mudstone with Rhizophora; trough cross-bedded sandstone; laminated mudstone; strip mudstone with thin sandstone and siltstone; and interbedded HCS sandstone and mudstone. Based on the presence of Rhizophora, Brownlowia, Florchuetia sp., Polypodium, Stenochleana palustris, Ascidian spicule low angle cross bedding, very fine grained sandstone, thin alternations of very fine sandstone, silt and clay layers showing cyclicity (muddy rhythemites), rocks in the Sandakan Formation are interpreted as mangal estuary and open marine facies. Three facies associations could be deduced from the seven lithofacies: Gradual coarsening upwards shoreface; abrupt change facies and prograding estuary facies association.
The main goal of this paper was to study the effect of ultrasonic treatment time on the mechanical properties of thermoplastic natural rubber(TPNR) reinforced with hybrid MWNTs-OMMT. The intercalation of TPNR enhancement into layers of clay by increasing the d-spacing was found using X-ray diffraction. The tensile properties of nanocomposites treated with ultrasonic increased when compared with untreated nanocomposites. The optimum ultrasonic treatment time was obtained at 3 h. The transmission electron microscope micrograph showed a combination of intercalated-exfoliated structure of the TPNR composites with organic clay and dispersion of MWNTs. The ultrasonic treatment can promote the dispersion of MWNTs-OMMT in TPNR and also improved the compatibility of hybrid filler and the TPNR matrix.
In this study, the performance of two types of nanocarbons (NCs), namely carbon nanotubes (CNTs) and carbon nanofibers (CNFs), on the three-dimensional shrinkage and swelling properties of three clayey soils were investigated. The specimens of soil mixed with clay with bentonite contents of 0, 10 and 20% by weight of dry soil. NC contents of 0.05, 0.075, 0.10 and 0.20% were chosen to investigate the influence of different NC types, CNTs and CNFs. All soil specimens were compacted under maximum dry unit weight and optimum water content conditions by using standard compaction tests. The physical and mechanical characteristics of the reinforced samples were then determined. These included the desiccation cracking area, used to determine the crack intensity factor (CIF), as well as the shrinkage and swelling. The CIF for the soil specimens without NCs were higher than the soil specimens with NC additives. These results show that NCs decrease the development of desiccation cracks on the surface of compacted samples. The shrinkage and swelling tests showed that the rate of volume changing of the compacted soil specimens reduced with the increasing of NCs.
Boron is considered important to improve the drought resistance, yield and protein contents of pulses. Two years of field experiment was conducted to evaluate the effect of boron application and water stress given at vegetative and flowering stages on growth, yield and protein contents of mungbean during spring 2014 and 2015. The experiment was laid out in randomized complete block design with split-plot arrangement giving more emphasis to boron. The experiment comprised three water stress levels (normal irrigation, water stress at vegetative stage and water stress at reproductive phase) and four boron levels (0, 2, 4 and 6 kg ha-1). Final seed yield was significantly increased by different levels of boron application both under normal and water stressed conditions. The increase in yield was mainly due to greater plant height, number of pods bearing branches, number of pods per plant, number of seeds per pod and 1000-grain weight. Boron application at 4 kg ha-1 caused 17%, 10% and 4% increase in grain yield under normal irrigation, stress at vegetative stage and water stress at reproductive phase, respectively. Protein contents were also increased (9-16%) at same boron treatment. Most parameters showed a marked decrease at higher dose (6 kg ha-1) of boron. In conclusion, the boron application at rate of 4 kg ha-1 in clay-loam soil performed the best to enhance mungbean growth, yield and seed protein both under normal and water stressed conditions.
Nanocrystalline aluminosilicate F-type zeolite (K-F, EDI-type structure) was synthesized in an organic template-free system
using rice husk ash (RHA) silica source and microwave energy. The morphology, crystallite size, chemical composition,
crystallographic and basicity properties of the nanocrystals were studied by using various characterization techniques.
The results showed that fully crystalline K-F zeolite (Si/Al ratio = 1.26) with flattened cuboid-like shaped could be
obtained within 2 min of crystallization which was considerably very fast. In addition, K-F zeolite nanocrystals was also
tested as a solid base catalyst in the microwave-enhanced Aldol condensation reaction of heptanal with benzaldehyde
and the six catalytic parameters were studied and optimized. The nanosized K-F zeolite crystals showed good catalytic
performance in the studied reaction with 77.1% heptanal conversion and 69.5% jasminaldehyde selectivity under optimum
reaction condition. The nanocatalyst was reusable and no significant loss in its catalytic reactivity was observed even
after five consecutive reaction cycles.
The development degree of fissure water in underground rock is a great trouble to the construction of railway tunnel, which will cause a series of environmental geological problems. Take the surrounding rock-section of the typical red clay in Lvliang-Mt. railway tunnel below the underground water level as an example, several aspects about the red clay surrounding rock will be researched, including pore water pressure, volume moisture content, stress of surrounding rock, vault subsidence and horizontal convergence through the field monitoring. Taking into account the importance of railway tunnel engineering, the large shear test of red clay was carried out at the construction site specially and the reliable situ shear strength parameters of surrounding rock will be obtained. These investigations and field tests helped to do a series of work: Three dimensional finite element numerical model of railway tunnel will be established, the deformation law of the red clay surrounding rock will be investigated, respectively, for the water-stress coupling effect and without considering it, the variation of the pore water pressure during excavation, the influence degree about the displacement field and stress field of water-stress coupling on red clay-rock will be discussed and the mechanism of the surrounding rock deformation will be submitted. Finally, the paper puts forward the feasible drainage scheme of the surrounding rock and the tunnel cathode. The geological environment safety of tunnel construction is effectively protected.