Displaying publications 41 - 55 of 55 in total

Abstract:
Sort:
  1. Hajeb P, Selamat J, Afsah-Hejri L, Mahyudin NA, Shakibazadeh S, Sarker MZ
    J Food Prot, 2015 Jan;78(1):172-9.
    PMID: 25581193 DOI: 10.4315/0362-028X.JFP-14-248
    High-quality fish oil for human consumption requires low levels of toxic elements. The aim of this study was to compare different oil extraction methods to identify the most efficient method for extracting fish oil of high quality with the least contamination. The methods used in this study were Soxhlet extraction, enzymatic extraction, wet reduction, and supercritical fluid extraction. The results showed that toxic elements in fish oil could be reduced using supercritical CO2 at a modest temperature (60°C) and pressure (35 MPa) with little reduction in the oil yield. There were significant reductions in mercury (85 to 100%), cadmium (97 to 100%), and lead (100%) content of the fish oil extracted using the supercritical fluid extraction method. The fish oil extracted using conventional methods contained toxic elements at levels much higher than the accepted limits of 0.1 μg/g.
  2. Fakhlaei R, Babadi AA, Sun C, Ariffin NM, Khatib A, Selamat J, et al.
    Food Chem, 2024 May 30;441:138402.
    PMID: 38218155 DOI: 10.1016/j.foodchem.2024.138402
    Safety and quality aspects of food products have always been critical issues for the food production and processing industries. Since conventional quality measurements are laborious, time-consuming, and expensive, it is vital to develop new, fast, non-invasive, cost-effective, and direct techniques to eliminate those challenges. Recently, non-destructive techniques have been applied in the food sector to improve the quality and safety of foodstuffs. The aim of this review is an effort to list non-destructive techniques (X-ray, computer tomography, ultraviolet-visible spectroscopy, hyperspectral imaging, infrared, Raman, terahertz, nuclear magnetic resonance, magnetic resonance imaging, and ultrasound imaging) based on the electromagnetic spectrum and discuss their principle and application in the food sector. This review provides an in-depth assessment of the different non-destructive techniques used for the quality and safety analysis of foodstuffs. We also discussed comprehensively about advantages, disadvantages, challenges, and opportunities for the application of each technique and recommended some solutions and developments for future trends.
  3. Pirouz AA, Selamat J, Iqbal SZ, Mirhosseini H, Karjiban RA, Bakar FA
    Sci Rep, 2017 Sep 29;7(1):12453.
    PMID: 28963539 DOI: 10.1038/s41598-017-12341-3
    Adsorption plays an important role in the removal of mycotoxins from feedstuffs. The main objective of this study was to investigate the efficacy of using magnetic graphene oxide nanocomposites (MGO) as an adsorbent for the reduction of Fusarium mycotoxins in naturally contaminated palm kernel cake (PKC). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to assess the mycotoxins in animal feed. Target mycotoxins included the zearalenone (ZEA), the fumonisins (FB1 and FB2) and trichothecenes (deoxynivalenol (DON), HT-2 and T-2 toxin). Response surface methodology (RSM) was applied to investigate the effects of time (3-7 h), temperature (30-50 °C) and pH (3-7) on the reduction. The response surface models with (R2 = 0.94-0.99) were significantly fitted to predict mycotoxins in contaminated PKC. Furthermore, the method ensured a satisfactory adjustment of the polynomial regression models with the experimental data except for fumonisin B1 and B2, which decrease the adsorption of magnetic graphene oxide (MGO). The optimum reduction was performed at pH 6.2 for 5.2 h at of 40.6 °C. Under these optimum conditions, reduced levels of 69.57, 67.28, 57.40 and 37.17%, were achieved for DON, ZEA, HT-2, and T-2, respectively.
  4. Azri FA, Sukor R, Selamat J, Abu Bakar F, Yusof NA, Hajian R
    Toxins (Basel), 2018 May 11;10(5).
    PMID: 29751668 DOI: 10.3390/toxins10050196
    Mycotoxins are the secondary toxic metabolites produced naturally by fungi. Analysis of mycotoxins is essential to minimize the consumption of contaminated food and feed. In this present work, an ultrasensitive electrochemical immunosensor for the detection of aflatoxin B₁ (AFB₁) was successfully developed based on an indirect competitive enzyme-linked immunosorbent assay (ELISA). Various parameters of ELISA, including antigen⁻antibody concentration, blocking agents, incubation time, temperature and pH of reagents, were first optimized in a 96-well microtiter plate to study the antigen⁻antibody interaction and optimize the optimum parameters of the assay. The optimized assay was transferred onto the multi-walled carbon nanotubes/chitosan/screen-printed carbon electrode (MWCNTs/CS/SPCE) by covalent attachment with the aid of 1-Ethyl-3-(3-dimetylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS). Competition occurred between aflatoxin B₁-bovine serum albumin (AFB₁⁻BSA) and free AFB₁ (in peanut sample and standard) for the binding site of a fixed amount of anti-AFB₁ antibody. Differential pulse voltammetry (DPV) analysis was used for the detection based on the reduction peak of TMB(ox). The developed immunosensor showed a linear range of 0.0001 to 10 ng/mL with detection limit of 0.3 pg/mL. AFB₁ analysis in spiked peanut samples resulted in recoveries between 80% and 127%. The precision of the developed immunosensor was evaluated by RSD values (n = 5) as 4.78% and 2.71% for reproducibility and repeatability, respectively.
  5. Dirong G, Nematbakhsh S, Selamat J, Chong PP, Idris LH, Nordin N, et al.
    Molecules, 2021 Oct 28;26(21).
    PMID: 34770913 DOI: 10.3390/molecules26216502
    Chicken is known to be the most common meat type involved in food mislabeling and adulteration. Establishing a method to authenticate chicken content precisely and identifying chicken breeds as declared in processed food is crucial for protecting consumers' rights. Categorizing the authentication method into their respective omics disciplines, such as genomics, transcriptomics, proteomics, lipidomics, metabolomics, and glycomics, and the implementation of bioinformatics or chemometrics in data analysis can assist the researcher in improving the currently available techniques. Designing a vast range of instruments and analytical methods at the molecular level is vital for overcoming the technical drawback in discriminating chicken from other species and even within its breed. This review aims to provide insight and highlight previous and current approaches suitable for countering different circumstances in chicken authentication.
  6. Fakhlaei R, Selamat J, Abdull Razis AF, Sukor R, Ahmad S, Khatib A, et al.
    Chemosphere, 2024 May;356:141736.
    PMID: 38554873 DOI: 10.1016/j.chemosphere.2024.141736
    Since ancient times, honey has been used for medical purposes and the treatment of various disorders. As a high-quality food product, the honey industry is prone to fraud and adulteration. Moreover, limited experimental studies have investigated the impact of adulterated honey consumption using zebrafish as the animal model. The aims of this study were: (1) to calculate the lethal concentration (LC50) of acid-adulterated Apis mellifera honey on embryos, (2) to investigate the effect of pure and acid-adulterated A. mellifera honey on hatching rate (%) and heart rate of zebrafish (embryos and larvae), (3) to elucidate toxicology of selected adulterated honey based on lethal dose (LD50) using adult zebrafish and (4) to screen the metabolites profile of adulterated honey from blood serum of adult zebrafish. The result indicated the LC50 of 31.10 ± 1.63 (mg/ml) for pure A. mellifera honey, while acetic acid demonstrates the lowest LC50 (4.98 ± 0.06 mg/ml) among acid adulterants with the highest mortality rate at 96 hpf. The treatment of zebrafish embryos with adulterated A. mellifera honey significantly (p ≤ 0.05) increased the hatching rate (%) and decreased the heartbeat rate. Acute, prolong-acute, and sub-acute toxicology tests on adult zebrafish were conducted at a concentration of 7% w/w of acid adulterants. Furthermore, the blood serum metabolite profile of adulterated-honey-treated zebrafish was screened by LC-MS/MS analysis and three endogenous metabolites have been revealed: (1) Xanthotoxol or 8-Hydroxypsoralen, (2) 16-Oxoandrostenediol, and (3) 3,5-Dicaffeoyl-4-succinoylquinic acid. These results prove that employed honey adulterants cause mortality that contributes to higher toxicity. Moreover, this study introduces the zebrafish toxicity test as a new promising standard technique for the potential toxicity assessment of acid-adulterated honey in this study and hazardous food adulterants for future studies.
  7. Shamsudin S, Selamat J, Sanny M, A R SB, Jambari NN, Khatib A
    Molecules, 2019 Oct 29;24(21).
    PMID: 31671885 DOI: 10.3390/molecules24213898
    Stingless bee honey produced by Heterotrigona itama from different botanical origins was characterised and discriminated. Three types of stingless bee honey collected from acacia, gelam, and starfruit nectars were analyzed and compared with Apis mellifera honey. The results showed that stingless bee honey samples from the three different botanical origins were significantly different in terms of their moisture content, pH, free acidity, total soluble solids, colour characteristics, sugar content, amino acid content and antioxidant properties. Stingless bee honey was significantly different from Apis mellifera honey in terms of physicochemical and antioxidant properties. The amino acid content was further used in the chemometrics analysis to evaluate the role of amino acid in discriminating honey according to botanical origin. Partial least squares-discriminant analysis (PLS-DA) revealed that the stingless bee honey was completely distinguishable from Apis mellifera honey. Notably, a clear distinction between the stingless bee honey types was also observed. The specific amino acids involved in the distinction of honey were cysteine for acacia and gelam, phenylalanine and 3-hydroxyproline for starfruit, and proline for Apis mellifera honey. The results showed that all honey samples were successfully classified based on amino acid content.
  8. Tan C, Selamat J, Jambari NN, Sukor R, Murugesu S, Khatib A
    Foods, 2021 Sep 14;10(9).
    PMID: 34574284 DOI: 10.3390/foods10092174
    Globally, village chicken is popular and is known as a premium meat with a higher price. Food fraud can occur by selling other chicken breeds at a premium price in local markets. This study aimed to distinguish local village chicken from other chicken breeds available in the market, namely, colored broiler (Hubbard), broiler (Cobb), and spent laying hen (Dekalb) in pectoralis major and serum under commercial conditions using an untargeted metabolomics approach. Both pectoralis major and serum were analyzed using gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) results distinguished four different chicken breeds into three main groups for pectoralis major and serum. A total of 30 and 40 characteristic metabolites were identified for pectoralis major and serum, respectively. The four chicken breeds were characterized by the abundance of metabolites such as amino acids (L-glutamic acid, L-threonine, L-serine, L-leucine), organic acids (L-lactic acid, succinic acid, 3-hydroxybutyric acid), sugars (D-allose, D-glucose), sugar alcohols (myo-inositol), and fatty acids (linoleic acid). Our results suggest that an untargeted metabolomics approach using GC-MS and PCA could discriminate chicken breeds for pectoralis major and serum under commercial conditions. In this study, village chicken could only be distinguished from colored broiler (Hubbard) by serum samples.
  9. Nematbakhsh S, Pei CP, Nordin N, Selamat J, Idris LH, Razis AFA
    Poult Sci, 2024 Jul 31;103(11):104128.
    PMID: 39180779 DOI: 10.1016/j.psj.2024.104128
    Local village chicken, or "Ayam kampung" as it's known in Malaysia, is considered a premium chicken breed with a higher price than other chicken breeds. As a result of their comparable appearances and sizes, colored broiler chickens are often sold as village chickens, which is a form of food fraud that can result in a 3- to 4-fold rise in profit. Therefore, developing a breed-specific authentication method is crucial for preventing food fraud in the poultry industry. This study aims to investigate the genetic diversity of village chickens from other commercial chicken breed populations available in the market (broiler [Cobb], colored broiler [Hubbard], and layer [DeKalb]) to identify breed-specific DNA fragments as biomarkers for village chicken authentication. The Whole-genome sequencing and mutation calling of 12 chickens (3 chickens/breed) led to the identification of a total of 73,454,654 single nucleotide polymorphisms (SNP) and 8,762,338 insertion and deletions (InDel) variants, with more variants detected in the village chicken population (6,346,704 SNPs; 752,408 InDels) compared to commercial breeds. Therefore, this study revealed that village chickens were more genetically variable compared to other breeds in Malaysia. Furthermore, the breed-specific genomic region located on chromosome 1 (1:84,405,652) harboring SNP (C-T) with high discrimination power was discovered and validated which can be considered as a novel breed-specific biomarker to develop a method for accurate authentication of village chickens in Malaysia. This authentication method offers potentialw applications in the chicken industry and food safety.
  10. Sibuar AA, Zulkafflee NS, Selamat J, Ismail MR, Lee SY, Abdull Razis AF
    PMID: 35055550 DOI: 10.3390/ijerph19020731
    Rice is one of the major crops as well as the staple food in Malaysia. However, historical mining activity has raised a concern regarding heavy metal contamination in paddy plants, especially in Perak, a state with major tin mining during the late nineteenth century. Therefore, the objective of this study is to investigate the heavy metals (As, Cd, Pb, Cu, Cr) contamination in paddy soils and paddy plants in three districts in Perak. The content of heavy metals was determined using ICP-MS, while the absorption and transferability of heavy metals in the paddy plants were investigated through enrichment (EF) and translocation (TF) factors. Principal component analysis (PCA) was employed to recognize the pattern of heavy metal contaminations in different sampling areas. Health risk assessment was performed through calculation of various indices. The quantification results showed that root contained highest concentration of the studied heavy metals, with As exhibiting the highest concentration. The EF results revealed the accumulation of As, Cu, and Cr in the rice grains while PCA showed the different compositional pattern in the different sampling areas. The health risk assessment disclosed both noncarcinogenic and carcinogenic risks in the local adults and children. Overall, findings from this study show that heavy metal contamination poses potential health risks to the residents and control measure is required.
  11. Rahman MAH, Selamat J, Samsudin NIP, Shaari K, Mahror N, John JM
    Food Sci Nutr, 2022 Nov;10(11):3993-4002.
    PMID: 36348788 DOI: 10.1002/fsn3.2995
    Aspergillus section Flavi constitutes several species of opportunistic fungi, notable among them are A. flavus and A. parasiticus, capable of surviving harsh conditions and colonizing a wide range of agricultural products pre- and postharvest. Physical and chemical control methods are widely applied in order to mitigate the invasion of A. flavus in crops. However, physical control is not suitable for large scale and chemical control often leads to environmental pollution, whereas biological control offers a safer, environmentally friendly, and economical alternative. The present study aimed to investigate the antagonism of several non-aflatoxigenic A. flavus strains against the aflatoxigenic ones in vitro (semisynthetic peanut growth medium; MPA) in terms of colony growth rate and AFB1 inhibition. Different peanut concentrations were used to obtain the optimum peanut concentration in the formulated growth medium. A dual culture assay was performed to assess the antagonism of nonaflatoxigenic strains against the aflatoxigenic ones. Results revealed that 9% MPA exhibited the highest growth and AFB1 inhibition by nonaflatoxigenic strains. It was also found that different nonaflatoxigenic strains exhibited different antagonism against the aflatoxigenic ones which ranged from 11.09 ± 0.65% to 14.06 ± 0.14% for growth inhibition, and 53.97 ± 2.46% to 72.64 ± 4.54% for AFB1 inhibition. This variability could be due to the difference in antagonistic metabolites produced by different nonaflatoxigenic strains assessed in the present study. Metabolomics study to ascertain the specific metabolites that conferred the growth and aflatoxin inhibition is ongoing.
  12. Zulkafflee NS, Mohd Redzuan NA, Hanafi Z, Selamat J, Ismail MR, Praveena SM, et al.
    PMID: 31795132 DOI: 10.3390/ijerph16234769
    Rice ingestion is one of the major pathways for heavy metal bioaccumulation in human. This study aimed to measure the heavy metal content of paddy soils and its bioavailability in paddy grain in order to assess the health risk. In total, 10 rice samples (50 g each) of paddy plants were harvested from the Selangor and Terengganu areas of Malaysia to assess the bioavailability of heavy metal (As, Cd, Cu, Cr, and Pb) using the in vitro digestion model of Rijksinstituut voor Volksgezondheid en Milieu. The bioavailability of heavy metal concentrations in rice samples were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The findings showed the bioavailability of heavy metal concentrations was decreased in the order Cr > Cu > Pb > As > Cd. Chromium was found to be the most abundant bioavailable heavy metal in cooked rice, which was the result of its high content in paddy soil. Hazard Quotient values for the bioavailability of the heavy metal studied were less than one indicating no non-carcinogenic health risks for adults and children. Meanwhile, the total Lifetime Cancer Risk exceeded the acceptable value showing a potential of carcinogenic health risk for both adults and children. The application of in vitro digestion model in assessing bioavailability of heavy metal produces a more realistic estimation of human health risks exposure. However, a regular monitoring of pollution in Selangor and Terengganu areas is crucial since the exposure of heavy metals through rice consumption poses the potential non-carcinogenic and carcinogenic health risk to the local residents.
  13. Yazid SNE, Tajudin NI, Razman NAA, Selamat J, Ismail SI, Sanny M, et al.
    Mycotoxin Res, 2023 Aug;39(3):177-192.
    PMID: 37219742 DOI: 10.1007/s12550-023-00484-4
    The present work investigated the potential of fungal species from grain maize farms in Malaysia as antagonists against the indigenous mycotoxigenic fungal species and their subsequent mycotoxin production. Dual-culture assay was conducted on grain maize agar (GMA) with 12 strains of potential fungal antagonists namely Bjerkandra adusta, Penicillium janthinellum, Schizophyllum commune, Trametes cubensis, Trichoderma asperelloides, Trichoderma asperellum, Trichoderma harzianum, and Trichoderma yunnanense against seven mycotoxigenic strains namely Aspergillus flavus, Aspergillus niger, Fusarium verticillioides, and Fusarium proliferatum producing aflatoxins, ochratoxin A, and fumonisins, respectively. Based on fungal growth inhibition, Trichoderma spp. showed the highest inhibitory activity (73-100% PIRG, Percentage Inhibition of Radial Growth; 28/0 ID, Index of Dominance) against the tested mycotoxigenic strains. Besides, B. adusta and Tra. cubensis showed inhibitory activity against some of the tested mycotoxigenic strains. All fungal antagonists showed varying degrees of mycotoxin reduction. Aflatoxin B1 produced by A. flavus was mainly reduced by P. janthinellum, Tra. cubensis, and B. adusta to 0 ng/g. Ochratoxin A produced by A. niger was mainly reduced by Tri. harzianum and Tri. asperellum to 0 ng/g. Fumonisin B1 and FB2 produced by F. verticillioides was mainly reduced by Tri. harzianum, Tri. asperelloides, and Tri. asperellum to 59.4 and 0 µg/g, respectively. Fumonisin B1 and FB2 produced by F. proliferatum were mainly reduced by Tri. asperelloides and Tri. harzianum to 244.2 and 0 µg/g, respectively. This is the first study that reports on the efficacy of Tri. asperelloides against FB1, FB2, and OTA, P. janthinellum against AFB1, and Tra. cubensis against AFB1.
  14. Zakaria Z, Zulkafflee NS, Mohd Redzuan NA, Selamat J, Ismail MR, Praveena SM, et al.
    Plants (Basel), 2021 May 26;10(6).
    PMID: 34073642 DOI: 10.3390/plants10061070
    Rice is a worldwide staple food and heavy metal contamination is often reported in rice production. Heavy metal can originate from natural sources or be present through anthropogenic contamination. Therefore, this review summarizes the current status of heavy metal contamination in paddy soil and plants, highlighting the mechanism of uptake, bioaccumulation, and health risk assessment. A scoping search employing Google Scholar, Science Direct, Research Gate, Scopus, and Wiley Online was carried out to build up the review using the following keywords: heavy metals, absorption, translocation, accumulation, uptake, biotransformation, rice, and human risk with no restrictions being placed on the year of study. Cadmium (Cd), arsenic (As), and lead (Pb) have been identified as the most prevalent metals in rice cultivation. Mining and irrigation activities are primary sources, but chemical fertilizer and pesticide usage also contribute to heavy metal contamination of paddy soil worldwide. Further to their adverse effect on the paddy ecosystem by reducing the soil fertility and grain yield, heavy metal contamination represents a risk to human health. An in-depth discussion is further offered on health risk assessments by quantitative measurement to identify potential risk towards heavy metal exposure via rice consumption, which consisted of in vitro digestion models through a vital ingestion portion of rice.
  15. Mansor M, Al-Obaidi JR, Ismail IH, Abidin MAZ, Zakaria AF, Lau BYC, et al.
    Mol Immunol, 2023 Mar;155:44-57.
    PMID: 36696839 DOI: 10.1016/j.molimm.2022.12.016
    INTRODUCTION: Goat's milk thought to be a good substitute for cow's milk protein allergic (CMPA) individuals. However, there is growing evidence that their proteins have cross-reactivities with cow's milk allergens. This study aimed to profile and compare milk proteins from different goat breeds that have cross-reactivity to cow's milk allergens.

    METHODOLOGY: Proteomics was used to compare protein extracts of skim milk from Saanen, Jamnapari, and Toggenburg. Cow's milk was used as a control. IgE-immunoblotting and mass spectrometry were used to compare and identify proteins that cross-reacted with serum IgE from CMPA patients (n = 10).

    RESULTS: The analysis of IgE-reactive proteins revealed that the protein spots identified with high confidence were proteins homologous to common cow's milk allergens such as α-S1-casein (αS1-CN), β-casein (β-CN), κ-casein (κ-CN), and beta-lactoglobulin (β-LG). Jamnapari's milk proteins were found to cross-react with four major milk allergens: α-S1-CN, β-CN, κ-CN, and β-LG. Saanen goat's milk proteins, on the other hand, cross-reacted with two major milk allergens, α-S1-CN and β-LG, whereas Toggenburg goat's milk proteins only react with one of the major milk allergens, κ-CN.

    CONCLUSION: These findings may help in the development of hypoallergenic goat milk through cross-breeding strategies of goat breeds with lower allergenic milk protein contents.

Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links