Displaying publications 41 - 45 of 45 in total

Abstract:
Sort:
  1. Ahmad Sobri MZ, Khoo KS, Liew CS, Lim JW, Tong WY, Zhou Y, et al.
    J Environ Manage, 2024 Jun;360:121138.
    PMID: 38749131 DOI: 10.1016/j.jenvman.2024.121138
    In the pursuit of alternatives for conventional diesel, sourced from non-renewable fossil fuel, biodiesel has gained attentions for its intrinsic benefits. However, the commercial production process for biodiesel is still not sufficiently competitive. This review analyses microalgal lipid, one of the important sources of biodiesel, and its cultivation techniques with recent developments in the technical aspects. In fact, the microalgal lipids are the third generation feedstock, used for biodiesel production after its benefits outweigh that of edible vegetable oils (first generation) and non-edible oils (second generation). The critical factors influencing microalgal growth and its lipid production and accumulation are also discussed. Following that is the internal enhancement for cellular lipid production through genetic engineering. Moreover, the microalgae cultivation data modelling was also rationalized, with a specific focus on growth kinetic models that allow for the prediction and optimization of lipid production. Finally, the machine learning and environmental impact analysis are as well presented as important aspects to consider in fulfilling the prime objective of commercial sustainability to produce microalgal biodiesel.
  2. AlDala'een NFD, Mohamad WNKW, Alias N, Ali AM, Shaikh Mohammed J
    Soft Matter, 2017 Dec 20;14(1):124-131.
    PMID: 29215674 DOI: 10.1039/c7sm01682d
    There is an increasing interest in bioinspired dynamic materials. Abundant illustrations of protein domains exist in nature, with remarkable ligand binding characteristics and structures that undergo conformational changes. For example, calmodulin (CaM) can have three conformational states, which are the unstructured Apo-state, Ca2+-bound ligand-exposed binding state, and compact ligand-bound state. CaM's mechanical response to biological cues is highly suitable for engineering dynamic materials. The distance between CaM globular terminals in the Ca2+-bound state is 5 nm and in the ligand-bound state is 1.5 nm. CaM's nanoscale conformational changes have been used to develop dynamic hydrogel microspheres that undergo reversible volume changes. The current work presents the fabrication and preliminary results of layer-by-layer (LbL) self-assembled Dynamic MicroCapsules (DynaMicCaps) whose multilayered shell walls are composed of polyelectrolytes and CaM. Quasi-dynamic perfusion results show that the DynaMicCaps undergo drastic volume changes, with up to ∼1500% increase, when exposed to a biochemical ligand trifluoperazine (TFP) at pH 6.3. Under similar test conditions, microcapsules without CaM also underwent volume changes, with only up to ∼290% increase, indicating that CaM's bio-responsiveness was retained within the shell walls of the DynaMicCaps. Furthermore, DynaMicCaps exposed to 0.1 M NaOH underwent volume changes, with only up to ∼580% volume increase. Therefore, DynaMicCaps represent a new class of polyelectrolyte multilayer (PEM) capsules that can potentially be used to release their payload at near physiological pH. With over 200 proteins that undergo marked, well-characterized conformational changes in response to specific biochemical triggers, several other versions of DynaMicCaps can potentially be developed.
  3. Adeniji AO, Okaiyeto K, Mohammed JN, Mabaleha M, Tanor EB, George MJ
    PMID: 37360561 DOI: 10.1007/s13762-023-04916-7
    Microplastic distribution and pollution as emerging contaminants have become a leading environmental issue globally, owing to their ecological and health implications on biota and humans. Although several bibliometric studies have been reported on microplastics, they are mostly restricted to selected environmental media. As a result, the present study aimed at assessing the literature growth trend of microplastics-related research and their distribution in the environment using a bibliometric approach. The Web of Science Core Collection was explored to retrieve published articles on microplastics from 2006 to 2021, and the data were analysed using the Biblioshiny package of RStudio. This study also highlighted filtration, separation, coagulation, membrane technology, flotation, bionanomaterials, bubble barrier devices, and sedimentation as MP remediation techniques. In the present study, a total of 1118 documents were collected from the literature search; the documents/author and authors/document were 0.308 and 3.25, respectively. A significant growth rate of 65.36% was recorded with notable progress between 2018 and 2021. China, the USA, Germany, the UK, and Italy recorded the highest number of publications within the period under consideration. A collaboration index of 3.32 was also relatively high, with the Netherlands, Malaysia, Iran, France, and Mexico having the highest MCP ratios, respectively. It is anticipated that findings from this study will help the policymakers in addressing issues concerning microplastic pollution assist the researchers in identifying areas to concentrate their studies, and where to seek collaboration in their future research plans.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13762-023-04916-7.

  4. Matough FA, Budin SB, Hamid ZA, Abdul-Rahman M, Al-Wahaibi N, Mohammed J
    Sultan Qaboos Univ Med J, 2014 Feb;14(1):e95-e103.
    PMID: 24516761
    This study was carried out to determine the effects of tocotrienol-rich fraction (TRF) (200 mg/Kg) on biomarkers of oxidative stress on erythrocyte membranes and leukocyte deoxyribonucleic acid (DNA) damage in streptozotocin (STZ)-induced diabetic rats.
  5. Burstein R, Henry NJ, Collison ML, Marczak LB, Sligar A, Watson S, et al.
    Nature, 2019 Oct;574(7778):353-358.
    PMID: 31619795 DOI: 10.1038/s41586-019-1545-0
    Since 2000, many countries have achieved considerable success in improving child survival, but localized progress remains unclear. To inform efforts towards United Nations Sustainable Development Goal 3.2-to end preventable child deaths by 2030-we need consistently estimated data at the subnational level regarding child mortality rates and trends. Here we quantified, for the period 2000-2017, the subnational variation in mortality rates and number of deaths of neonates, infants and children under 5 years of age within 99 low- and middle-income countries using a geostatistical survival model. We estimated that 32% of children under 5 in these countries lived in districts that had attained rates of 25 or fewer child deaths per 1,000 live births by 2017, and that 58% of child deaths between 2000 and 2017 in these countries could have been averted in the absence of geographical inequality. This study enables the identification of high-mortality clusters, patterns of progress and geographical inequalities to inform appropriate investments and implementations that will help to improve the health of all populations.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links