Displaying publications 41 - 60 of 308 in total

Abstract:
Sort:
  1. Gronemeyer T, Suarez W, Nuytemans H, Calaramo M, Wistuba A, Mey FS, et al.
    Plants (Basel), 2016;5(2).
    PMID: 27164153 DOI: 10.3390/plants5020023
    With 50 species of the genus Nepenthes L. currently described from the Philippines, it is without doubt that the country, along with the islands of Sumatra (Indonesia) and Borneo (Indonesia, Malaysia, Brunei), should be considered the center of diversity of the genus. In this work, we describe two new species. One species, N. aenigma sp. nov., is from Ilocos Norte province on Luzon Island and has the-for Nepenthes-unusual ecological preference to grow in dense vegetation in deep shade. The other new species is from Mount Hamiguitan in Davao Oriental province on Mindanao Island. With this new entry, Mount Hamiguitan is now home to four endemic species (N. peltata, N. micramphora, N. hamiguitanensis, N. justinae sp. nov.). Furthermore, we provide an emended description of N. ramos based on field data. Nepenthes kurata is synonymized here with N. ramos.
  2. Gronemeyer T, Coritico F, Wistuba A, Marwinski D, Gieray T, Micheler M, et al.
    Plants (Basel), 2014;3(2):284-303.
    PMID: 27135505 DOI: 10.3390/plants3020284
    Together with the islands of Sumatra (Indonesia) and Borneo (Indonesia, Malaysia), the Philippines are the main center of diversity for carnivorous pitcher plants of the genus, Nepenthes L. Nepenthes are the largest of all carnivorous plants, and the species with the biggest pitchers are capable of trapping and digesting small amphibians and even mammals. The central cordillera of Mindanao Island in the south of the Philippines is mostly covered with old, primary forest and is the largest remaining cohesive, untouched area of wilderness in the Philippines. In a recent field exploration of two areas of the central cordillera, namely Mount Sumagaya and a section of the Pantaron range, four new taxa of Nepenthes were discovered. These four remarkable new species, N. pantaronensis, N. cornuta, N. talaandig and N. amabilis, are described, illustrated and assessed.
  3. Fauzi FM, Koutsoukas A, Lowe R, Joshi K, Fan TP, Glen RC, et al.
    J Ayurveda Integr Med, 2013 Apr;4(2):117-9.
    PMID: 23930045 DOI: 10.4103/0975-9476.113882
    In this article, we discuss our recent work in elucidating the mode-of-action of compounds used in traditional medicine including Ayurvedic medicine. Using computational ('in silico') approach, we predict potential targets for Ayurvedic anti-cancer compounds, obtained from the Indian Plant Anticancer Database given its chemical structure. In our analysis, we observed that: (i) the targets predicted can be connected to cancer pathogenesis i.e. steroid-5-alpha reductase 1 and 2 and estrogen receptor-β, and (ii) predominantly hormone-dependent cancer targets were predicted for the anti-cancer compounds. Through the use of our in silico target prediction, we conclude that understanding how traditional medicine such as Ayurveda work through linking with the 'western' understanding of chemistry and protein targets can be a fruitful avenue in addition to bridging the gap between the two different schools of thinking. Given that compounds used in Ayurveda have been tested and used for thousands of years (although not in the same approach as Western medicine), they can potentially be developed into potential new drugs. Hence, to further advance the case of Ayurvedic medicine, we put forward some suggestions namely: (a) employing and integrating novel analytical methods given the advancements of 'omics' and (b) sharing experimental data and clinical results on studies done on Ayurvedic compounds in an easy and accessible way.
  4. Wilting A, Christiansen P, Kitchener AC, Kemp YJ, Ambu L, Fickel J
    Mol Phylogenet Evol, 2011 Feb;58(2):317-28.
    PMID: 21074625 DOI: 10.1016/j.ympev.2010.11.007
    Recent morphological and molecular studies led to the recognition of two extant species of clouded leopards; Neofelis nebulosa from mainland southeast Asia and Neofelis diardi from the Sunda Islands of Borneo and Sumatra, including the Batu Islands. In addition to these new species-level distinctions, preliminary molecular data suggested a genetic substructure that separates Bornean and Sumatran clouded leopards, indicating the possibility of two subspecies of N. diardi. This suggestion was based on an analysis of only three Sumatran and seven Bornean individuals. Accordingly, in this study we re-evaluated this proposed subspecies differentiation using additional molecular (mainly historical) samples of eight Bornean and 13 Sumatran clouded leopards; a craniometric analysis of 28 specimens; and examination of pelage morphology of 20 museum specimens and of photographs of 12 wild camera-trapped animals. Molecular (mtDNA and microsatellite loci), craniomandibular and dental analyses strongly support the differentiation of Bornean and Sumatran clouded leopards, but pelage characteristics fail to separate them completely, most probably owing to small sample sizes, but it may also reflect habitat similarities between the two islands and their recent divergence. However, some provisional discriminating pelage characters are presented that need further testing. According to our estimates both populations diverged from each other during the Middle to Late Pleistocene (between 400 and 120 kyr). We present a discussion on the evolutionary history of Neofelis diardi sspp. on the Sunda Shelf, a revised taxonomy for the Sunda clouded leopard, N. diardi, and formally describe the Bornean subspecies, Neofelis diardi borneensis, including the designation of a holotype (BM.3.4.9.2 from Baram, Sarawak) in accordance with the rules of the International Code of Zoological Nomenclature.
  5. Ahmad F, Christenson A, Bainbridge M, Yusof AP, Ab Ghani S
    Biosens Bioelectron, 2007 Mar 15;22(8):1625-32.
    PMID: 16934449
    A new implantable electrocatalytic glucose sensor for subcutaneous glucose monitoring has been fabricated by immobilizing glucose oxidase on a chemically modified carbon fiber. The sensor was inserted subcutaneously on a male spraguely rat without any incision after dipping the microsensor in the rat's serum for 3 days. The so called "stained" microsensor, operated in the amperometric mode with an applied potential of +0.23 V versus Ag|AgCl, was able to directly measure the glucose concentration upon infusion of glucose. The results obtained were encouraging, with the response time was less than 2s and the apparent Michaelis-Menten value at 5.1+/-0.5mM. The "stained" microsensor shows good stability and reproducibility with constant response spanned over 25 days. Most common interferences in glucose analysis were minimized by the outerlayer Nafion. Hematology examinations showed minimal material-tissue interaction. Use of such mechanical devices will allow a more refined understanding towards glucose control in diabetic patients as the implanted microsensor was not effected by biocompatibility failures.
  6. Rao ES, Kadirvel P, Symonds RC, Geethanjali S, Thontadarya RN, Ebert AW
    PLoS One, 2015;10(7):e0132535.
    PMID: 26161546 DOI: 10.1371/journal.pone.0132535
    Association analysis was conducted in a core collection of 94 genotypes of Solanum pimpinellifolium to identify variations linked to salt tolerance traits (physiological and yield traits under salt stress) in four candidate genes viz., DREB1A, VP1.1, NHX1, and TIP. The candidate gene analysis covered a concatenated length of 4594 bp per individual and identified five SNP/Indels in DREB1A and VP1.1 genes explaining 17.0% to 25.8% phenotypic variation for various salt tolerance traits. Out of these five alleles, one at 297 bp in DREB1A had in-frame deletion of 6 bp (CTGCAT) or 12 bp (CTGCATCTGCAT), resulting in two alleles, viz., SpDREB1A_297_6 and SpDREB1A_297_12. These alleles individually or as haplotypes accounted for maximum phenotypic variance of about 25% for various salt tolerance traits. Design of markers for selection of the favorable alleles/haplotypes will hasten marker-assisted introgression of salt tolerance from S. pimpinellifolium into cultivated tomato.
  7. Fatihhi SJ, Harun MN, Abdul Kadir MR, Abdullah J, Kamarul T, Öchsner A, et al.
    Ann Biomed Eng, 2015 Oct;43(10):2487-502.
    PMID: 25828397 DOI: 10.1007/s10439-015-1305-8
    Fatigue assessment of the trabecular bone has been developed to give a better understanding of bone properties. While most fatigue studies are relying on uniaxial compressive load as the method of assessment, in various cases details are missing, or the uniaxial results are not very realistic. In this paper, the effect of three different load histories from physiological loading applied on the trabecular bone were studied in order to predict the first failure surface and the fatigue lifetime. The fatigue behaviour of the trabecular bone under uniaxial load was compared to that of multiaxial load using a finite element simulation. The plastic strain was found localized at the trabecular structure under multiaxial load. On average, applying multiaxial loads reduced more than five times the fatigue life of the trabecular bone. The results provide evidence that multiaxial loading is dominated in the low cycle fatigue in contrast to the uniaxial one. Both bone volume fraction and structural model index were best predictors of failure (p 
  8. Ahmed S, Kreft A, Chowdhury EH, Hossain SM, Galle PR, Neumann H
    PLoS One, 2020;15(10):e0239814.
    PMID: 33002048 DOI: 10.1371/journal.pone.0239814
    BACKGROUND AND STUDY AIMS: Despite major technical advancements, endoscopic surveillance for detecting premalignant lesions in Barrett's esophagus is challenging because of their flat appearance with only subtle morphological changes. Molecular endoscopic imaging (MEI) using nanoparticles (NPs), coupled with fluorescently labeled antibody permits visualization of disease-specific molecular alterations. The aim of this ex vivo study was to assess the diagnostic applicability of MEI with NPs to detect Barrett's metaplasia.

    PATIENTS AND METHODS: Seven patients undergoing endoscopic surveillance of known Barrett's esophagus were recruited. Freshly resected biopsy specimens were incubated with NPs coupled with FITC labeled Muc-2 antibodies and examined with MEI. Fluorescence intensity from Barrett's mucosa and control specimens were compared, followed by histological confirmation.

    RESULTS: Fluorescence signals, indicating the presence of goblet cells, were noted for traditional MEI using Muc-2 antibodies in Barrett's intestinal metaplasia. Significantly stronger fluorescence signals were achieved with NPs coupled with FITC-conjugated Muc-2 antibodies. The results of MEI with NPs for the prediction of Barrett's metaplasia correlated with the final histopathological examination in all the cases.

    CONCLUSIONS: Highly-specific NPs detected Barrett's metaplasia more efficiently than conventional MEI in this first feasibility study. MEI was as effective as standard histopathology for identifying Muc-2 containing goblet cells for diagnosis of Barrett's metaplasia. (DRKS-ID: DRKS00017747).

  9. Raman S, Tai CW, Le Marsney R, Schibler A, Gibbons K, Schlapbach LJ
    Pediatr Crit Care Med, 2020 09;21(9):811-819.
    PMID: 32516223 DOI: 10.1097/PCC.0000000000002411
    OBJECTIVES: Up to 37% of children admitted to the PICU develop acute kidney injury as defined by Kidney Disease: Improving Global Outcomes criteria. We describe the prevalence of acute kidney injury in a mixed pediatric intensive care cohort using this criteria. As tools to stratify patients at risk of acute kidney injury on PICU admission are lacking, we explored the variables at admission and day 1 that might predict the development of acute kidney injury.

    DESIGN: Single-center retrospective observational study.

    SETTING: Thirty-six-bed surgical/medical tertiary PICU.

    PATIENTS: Children from birth to less than or equal to 16 years old admitted between 2015 and 2018.

    INTERVENTIONS: None.

    MEASUREMENTS AND MAIN RESULTS: Clinical data were extracted from the PICU clinical information system. Patients with baseline creatinine at admission greater than 20 micromol/L above the calculated normal creatinine level were classified as "high risk of acute kidney injury." Models were created to predict acute kidney injury at admission and on day 1. Out of the 7,505 children admitted during the study period, 738 patients (9.8%) were classified as high risk of acute kidney injury at admission and 690 (9.2%) developed acute kidney injury during PICU admission. Compared to Kidney Disease: Improving Global Outcomes criteria as the reference standard, high risk of acute kidney injury had a lower sensitivity and higher specificity compared with renal angina index greater than or equal to 8 on day 1. For the admission model, the adjusted odds ratio of developing acute kidney injury for high risk of acute kidney injury was 4.2 (95% CI, 3.3-5.2). The adjusted odds ratio in the noncardiac cohort for high risk of acute kidney injury was 7.3 (95% CI, 5.5-9.7). For the day 1 model, odds ratios for high risk of acute kidney injury and renal angina index greater than or equal to 8 were 3.3 (95% CI, 2.6-4.2) and 3.1 (95% CI, 2.4-3.8), respectively.

    CONCLUSIONS: The relationship between high risk of acute kidney injury and acute kidney injury needs further evaluation. High risk of acute kidney injury performed better in the noncardiac cohort.

  10. Rama Chandran S, A Vigersky R, Thomas A, Lim LL, Ratnasingam J, Tan A, et al.
    Diabetes Technol Ther, 2020 02;22(2):103-111.
    PMID: 31502876 DOI: 10.1089/dia.2019.0277
    Background:
    Complex changes of glycemia that occur in diabetes are not fully captured by any single measure. The Comprehensive Glucose Pentagon (CGP) measures multiple aspects of glycemia to generate the prognostic glycemic risk (PGR), which constitutes the relative risk of hypoglycemia combined with long-term complications. We compare the components of CGP and PGR across type 1 and type 2 diabetes.
    Methods:
    Participants: n = 60 type 1 and n = 100 type 2 who underwent continuous glucose monitoring (CGM). Mean glucose, coefficient of variation (%CV), intensity of hypoglycemia (INThypo), intensity of hyperglycemia (INThyper), time out-of-range (TOR <3.9 and >10 mmol/L), and PGR were calculated. PGR (median, interquartile ranges [IQR]) for diabetes types, and HbA1c classes were compared.
    Results:
    While HbA1c was lower in type 1 (type 1 vs. type 2: 8.0 ± 1.6 vs. 8.6 ± 1.7, P = 0.02), CGM-derived mean glucoses were similar across both groups (P > 0.05). TOR, %CV, INThypo, and INThyper were all higher in type 1 [type 1 vs. type 2: 665 (500, 863) vs. 535 (284, 823) min/day; 39% (33, 46) vs. 29% (24, 34); 905 (205, 2951) vs. 18 (0, 349) mg/dL × min2; 42,906 (23,482, 82,120) vs. 30,166 (10,276, 57,183) mg/dL × min2, respectively, all P 
  11. Mohd Fauzi F, John CM, Karunanidhi A, Mussa HY, Ramasamy R, Adam A, et al.
    J Ethnopharmacol, 2017 Feb 02;197:61-72.
    PMID: 27452659 DOI: 10.1016/j.jep.2016.07.058
    ETHNOPHARMACOLOGICAL RELEVANCE: Cassia auriculata (CA) is used as an antidiabetic therapy in Ayurvedic and Siddha practice. This study aimed to understand the mode-of-action of CA via combined cheminformatics and in vivo biological analysis. In particular, the effect of 10 polyphenolic constituents of CA in modulating insulin and immunoprotective pathways were studied.

    MATERIALS AND METHODS: In silico target prediction was first employed to predict the probability of the polyphenols interacting with key protein targets related to insulin signalling, based on a model trained on known bioactivity data and chemical similarity considerations. Next, CA was investigated in in vivo studies where induced type 2 diabetic rats were treated with CA for 28 days and the expression levels of genes regulating insulin signalling pathway, glucose transporters of hepatic (GLUT2) and muscular (GLUT4) tissue, insulin receptor substrate (IRS), phosphorylated insulin receptor (AKT), gluconeogenesis (G6PC and PCK-1), along with inflammatory mediators genes (NF-κB, IL-6, IFN-γ and TNF-α) and peroxisome proliferators-activated receptor gamma (PPAR-γ) were determined by qPCR.

    RESULTS: In silico analysis shows that several of the top 20 enriched targets predicted for the constituents of CA are involved in insulin signalling pathways e.g. PTPN1, PCK-α, AKT2, PI3K-γ. Some of the predictions were supported by scientific literature such as the prediction of PI3K for epigallocatechin gallate. Based on the in silico and in vivo findings, we hypothesized that CA may enhance glucose uptake and glucose transporter expressions via the IRS signalling pathway. This is based on AKT2 and PI3K-γ being listed in the top 20 enriched targets. In vivo analysis shows significant increase in the expression of IRS, AKT, GLUT2 and GLUT4. CA may also affect the PPAR-γ signalling pathway. This is based on the CA-treated groups showing significant activation of PPAR-γ in the liver compared to control. PPAR-γ was predicted by the in silico target prediction with high normalisation rate although it was not in the top 20 most enriched targets. CA may also be involved in the gluconeogenesis and glycogenolysis in the liver based on the downregulation of G6PC and PCK-1 genes seen in CA-treated groups. In addition, CA-treated groups also showed decreased cholesterol, triglyceride, glucose, CRP and Hb1Ac levels, and increased insulin and C-peptide levels. These findings demonstrate the insulin secretagogue and sensitizer effect of CA.

    CONCLUSION: Based on both an in silico and in vivo analysis, we propose here that CA mediates glucose/lipid metabolism via the PI3K signalling pathway, and influence AKT thereby causing insulin secretion and insulin sensitivity in peripheral tissues. CA enhances glucose uptake and expression of glucose transporters in particular via the upregulation of GLUT2 and GLUT4. Thus, based on its ability to modulate immunometabolic pathways, CA appears as an attractive long term therapy for T2DM even at relatively low doses.

  12. Moss B, Lim KK, Beltram A, Moniz S, Tang J, Fornasiero P, et al.
    Sci Rep, 2017 06 07;7(1):2938.
    PMID: 28592816 DOI: 10.1038/s41598-017-03065-5
    In this article we present the first comparative study of the transient decay dynamics of photo-generated charges for the three polymorphs of TiO2. To our knowledge, this is the first such study of the brookite phase of TiO2 over timescales relevant to the kinetics of water splitting. We find that the behavior of brookite, both in the dynamics of relaxation of photo-generated charges and in energetic distribution, is similar to the anatase phase of TiO2. Moreover, links between the rate of recombination of charge carriers, their energetic distribution and the mode of transport are made in light of our findings and used to account for the differences in water splitting efficiency observed across the three polymorphs.
  13. Metzger FG, Ehlis AC, Haeussinger FB, Schneeweiss P, Hudak J, Fallgatter AJ, et al.
    Neuroscience, 2017 02 20;343:85-93.
    PMID: 27915210 DOI: 10.1016/j.neuroscience.2016.11.032
    Since functional imaging of whole body movements is not feasible with functional magnetic resonance imaging (fMRI), the present study presents in vivo functional near-infrared spectroscopy (fNIRS) as a suitable technique to measure body movement effects on fronto-temporo-parietal cortical activation in single- and dual-task paradigms. Previous fNIRS applications in studies addressing whole body movements were typically limited to the assessment of prefrontal brain areas. The current study investigated brain activation in the frontal, temporal and parietal cortex of both hemispheres using functional near-infrared spectroscopy (fNIRS) with two large 4×4 probe-sets with 24 channels each during single and dual gait tasks. 12 young healthy adults were measured using fNIRS walking on a treadmill: the participants performed two single-task (ST) paradigms (walking at different speeds, i.e. 3 and 5km/h) and a dual task (DT) paradigm where a verbal fluency task (VFT) had to be executed while walking at 3km/h. The results show an increase of activation in Broca's area during the more advanced conditions (ST 5km/h vs. ST 3km/h, DT vs. ST 3km/h, DT vs. 5km/h), while the corresponding area on the right hemisphere was also activated. DT paradigms including a cognitive task in conjunction with whole body movements elicit wide-spread cortical activation patterns across fronto-temporo-parietal areas. An elaborate assessment of these activation patterns requires more extensive fNIRS assessments than the traditional prefrontal investigations, e.g. as performed with portable fNIRS devices.
  14. Setoh YX, Peng NY, Nakayama E, Amarilla AA, Prow NA, Suhrbier A, et al.
    Viruses, 2018 10 03;10(10).
    PMID: 30282919 DOI: 10.3390/v10100541
    The recent emergence of Zika virus (ZIKV) in Brazil was associated with an increased number of fetal brain infections that resulted in a spectrum of congenital neurological complications known as congenital Zika syndrome (CZS). Herein, we generated de novo from sequence data an early Asian lineage ZIKV isolate (ZIKV-MY; Malaysia, 1966) not associated with microcephaly and compared the in vitro replication kinetics and fetal brain infection in interferon α/β receptor 1 knockout (IFNAR1-/-) dams of this isolate and of a Brazilian isolate (ZIKV-Natal; Natal, 2015) unequivocally associated with microcephaly. The replication efficiencies of ZIKV-MY and ZIKV-Natal in A549 and Vero cells were similar, while ZIKV-MY replicated more efficiently in wild-type (WT) and IFNAR-/- mouse embryonic fibroblasts. Viremias in IFNAR1-/- dams were similar after infection with ZIKV-MY or ZIKV-Natal, and importantly, infection of fetal brains was also not significantly different. Thus, fetal brain infection does not appear to be a unique feature of Brazilian ZIKV isolates.
  15. Lacheta L, Singh TSP, Hovsepian JM, Braun S, Imhoff AB, Pogorzelski J
    Knee Surg Sports Traumatol Arthrosc, 2019 Jan;27(1):299-304.
    PMID: 30374569 DOI: 10.1007/s00167-018-5223-9
    PURPOSE: The relationship between posterior shoulder instability and increased glenoid retroversion has been documented. Posterior open wedge glenoid osteotomy is a possible treatment option for patients with increased glenoid retroversion, but outcomes in the literature are limited. Therefore, the purpose of this study was to report the clinical and radiological outcomes following posterior glenoid osteotomy.

    METHODS: Patients that underwent posterior glenoid osteotomy for posterior shoulder instability with a GR angle of more than or equal to 10°, and were at least 12 months out from surgery, were included in the study. General data, medical history, and radiographic data such as the pre- and postoperative glenoid retroversion angle were extracted from the patients' hospital documentation notes. To evaluate the postoperative outcome, the Rowe standard rating scale for shoulder instability and the Oxford shoulder instability score were collected retrospectively.

    RESULTS: A total of 12 shoulders (11 patients) could be included. The mean pre-operative glenoid retroversion was 23.3° (range 12°-35°) and this reduced significantly (p = 0.003) to a mean of 13° (range 1°-28°) postoperatively. At a mean follow-up of 19.8 months (range 14-36), the median Rowe score was 90 points (range 45-100 points) and the median Oxford instability score was 44 points (range 21-48 points). There were no postoperative re-dislocations or revision surgeries; however, one patient reported signs of recurrent shoulder instability and four asymptomatic glenoid neck fractures occurred.

    CONCLUSION: Open wedge posterior glenoid osteotomy provides reliable clinical results with a low rate of clinical failure in a stringently selected patient cohort at short-term follow-up. However, due to the risk of potentially severe complications, we advocate this procedure for experienced shoulder surgeons only, who are familiar with its anatomical and technical considerations.

    LEVEL OF EVIDENCE: IV (case series).

  16. Nawawi WMFW, Lee KY, Kontturi E, Bismarck A, Mautner A
    Int J Biol Macromol, 2020 Apr 01;148:677-687.
    PMID: 31954796 DOI: 10.1016/j.ijbiomac.2020.01.141
    The structural component of fungal cell walls comprises of chitin covalently bonded to glucan; this constitutes a native composite material (chitin-glucan, CG) combining the strength of chitin and the toughness of glucan. It has a native nano-fibrous structure in contrast to nanocellulose, for which further nanofibrillation is required. Nanopapers can be manufactured from fungal chitin nanofibrils (FChNFs). FChNF nanopapers are potentially applicable in packaging films, composites, or membranes for water treatment due to their distinct surface properties inherited from the composition of chitin and glucan. Here, chitin-glucan nanofibrils were extracted from common mushroom (Agaricus bisporus) cell walls utilizing a mild isolation procedure to preserve the native quality of the chitin-glucan complex. These extracts were readily disintegrated into nanofibre dimensions by a low-energy mechanical blending, thus making the extract dispersion directly suitable for nanopaper preparation using a simple vacuum filtration process. Chitin-glucan nanopaper morphology, mechanical, chemical, and surface properties were studied and compared to chitin nanopapers of crustacean (Cancer pagurus) origin. It was found that fungal extract nanopapers had distinct physico-chemical surface properties, being more hydrophobic than crustacean chitin.
  17. Paudel P, Seong SH, Fauzi FM, Bender A, Jung HA, Choi JS
    ACS Omega, 2020 Apr 07;5(13):7705-7715.
    PMID: 32280914 DOI: 10.1021/acsomega.0c00684
    The present study examines the effect of human monoamine oxidase active anthraquinones emodin, alaternin (=7-hydroxyemodin), aloe-emodin, and questin from Cassia obtusifolia Linn seeds in modulating human dopamine (hD1R, hD3R, and hD4R), serotonin (h5-HT1AR), and vasopressin (hV1AR) receptors that were predicted as prime targets from proteocheminformatics modeling via in vitro cell-based functional assays, and explores the possible mechanisms of action via in silico modeling. Emodin and alaternin showed a concentration-dependent agonist effect on hD3R with EC50 values of 21.85 ± 2.66 and 56.85 ± 4.59 μM, respectively. On hV1AR, emodin and alaternin showed an antagonist effect with IC50 values of 10.25 ± 1.97 and 11.51 ± 1.08 μM, respectively. Interestingly, questin and aloe-emodin did not have any observable effect on hV1AR. Only alaternin was effective in antagonizing h5-HT1AR (IC50: 84.23 ± 4.12 μM). In silico studies revealed that a hydroxyl group at C1, C3, and C8 and a methyl group at C6 of anthraquinone structure are essential for hD3R agonist and hV1AR antagonist effects, as well as for the H-bond interaction of 1-OH group with Ser192 at a proximity of 2.0 Å. Thus, based on in silico and in vitro results, hV1AR, hD3R, and h5-HT1AR appear to be prime targets of the tested anthraquinones.
  18. Bukhari SNA, Tandiary MA, Al-Sanea MM, Abdelgawad MA, Chee CF, Hussain MA
    Curr Med Chem, 2021 Oct 26.
    PMID: 34702151 DOI: 10.2174/0929867328666211026120335
    LIMK1 and LIMK2 are involved in the regulation of cellular functions that depend on the dynamics of actin cytoskeleton. Disregulation of LIM kinases has been associated with diseases, such as tumor progression and metastasis, viral infection, and ocular diseases. Motivated by this, numerous studies have been carried out to discover small organic molecules capable of inhibiting LIM kinase effectively and selectively. In this review, a comprehensive survey of small organic molecules for LIM kinase inhibitors is reported, together with SAR study results, and the synthesis of these inhibitors.
  19. James CA, Hayes M, Willmott AGB, Gibson OR, Flouris AD, Schlader ZJ, et al.
    Temperature (Austin), 2017;4(3):314-329.
    PMID: 28944273 DOI: 10.1080/23328940.2017.1333189
    In cool conditions, physiologic markers accurately predict endurance performance, but it is unclear whether thermal strain and perceived thermal strain modify the strength of these relationships. This study examined the relationships between traditional determinants of endurance performance and time to complete a 5-km time trial in the heat. Seventeen club runners completed graded exercise tests (GXT) in hot (GXTHOT; 32°C, 60% RH, 27.2°C WBGT) and cool conditions (GXTCOOL; 13°C, 50% RH, 9.3°C WBGT) to determine maximal oxygen uptake (V̇O2max), running economy (RE), velocity at V̇O2max (vV̇O2max), and running speeds corresponding to the lactate threshold (LT, 2 mmol.l(-1)) and lactate turnpoint (LTP, 4 mmol.l(-1)). Simultaneous multiple linear regression was used to predict 5 km time, using these determinants, indicating neither GXTHOT (R(2) = 0.72) nor GXTCOOL (R(2) = 0.86) predicted performance in the heat as strongly has previously been reported in cool conditions. vV̇O2max was the strongest individual predictor of performance, both when assessed in GXTHOT (r = -0.83) and GXTCOOL (r = -0.90). The GXTs revealed the following correlations for individual predictors in GXTHOT; V̇O2maxr = -0.7, RE r = 0.36, LT r = -0.77, LTP r = -0.78 and in GXTCOOL; V̇O2maxr = -0.67, RE r = 0.62, LT r = -0.79, LTP r = -0.8. These data indicate (i) GXTHOT does not predict 5 km running performance in the heat as strongly as a GXTCOOL, (ii) as in cool conditions, vV̇O2max may best predict running performance in the heat.
  20. Chen D, Xia X, Wong TW, Bai H, Behl M, Zhao Q, et al.
    Macromol Rapid Commun, 2017 Apr;38(7).
    PMID: 28196300 DOI: 10.1002/marc.201600746
    Device applications of shape memory polymers demand diverse shape changing geometries, which are currently limited to non-omnidirectional movement. This restriction originates from traditional thermomechanical programming methods such as uniaxial, biaxial stretching, bending, or compression. A solvent-modulated programming method is reported to achieve an omnidirectional shape memory behavior. The method utilizes freeze drying of hydrogels of polyethylene glycol networks with a melting transition temperature around 50 °C in their dry state. Such a process creates temporarily fixed macroporosity, which collapses upon heating, leading to significant omnidirectional shrinkage. These shrunken materials can swell in water to form hydrogels again and the omnidirectional programming and recovery can be repeated. The fixity ratio (R f ) and recovery ratio (R r ) can be maintained at 90% and 98% respectively upon shape memory multicycling. The maximum linear recoverable strain, as limited by the maximum swelling, is ≈90%. Amongst various application potentials, one can envision the fabrication of multiphase composites by taking advantages of the omnidirectional shrinkage from a porous polymer to a denser structure.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links