Displaying publications 41 - 56 of 56 in total

Abstract:
Sort:
  1. Alam MA, Juraimi AS, Rafii MY, Hamid AA, Aslani F, Hakim MA
    Biol Res, 2016 Apr 18;49:24.
    PMID: 27090643 DOI: 10.1186/s40659-016-0084-5
    This study was undertaken to determine the effects of varied salinity regimes on the morphological traits (plant height, number of leaves, number of flowers, fresh and dry weight) and major mineral composition of 13 selected purslane accessions. Most of the morphological traits measured were reduced at varied salinity levels (0.0, 8, 16, 24 and 32 dS m(-1)), but plant height was found to increase in Ac1 at 16 dS m(-1) salinity, and Ac13 was the most affected accession. The highest reductions in the number of leaves and number of flowers were recorded in Ac13 at 32 dS m(-1) salinity compared to the control. The highest fresh and dry weight reductions were noted in Ac8 and Ac6, respectively, at 32 dS m(-1) salinity, whereas the highest increase in both fresh and dry weight was recorded in Ac9 at 24 dS m(-1) salinity compared to the control. In contrast, at lower salinity levels, all of the measured mineral levels were found to increase and later decrease with increasing salinity, but the performance of different accessions was different depending on the salinity level. A dendrogram was also constructed by UPGMA based on the morphological traits and mineral compositions, in which the 13 accessions were grouped into 5 clusters, indicating greater diversity among them. A three-dimensional principal component analysis also confirmed the output of grouping from cluster analysis.
  2. Ismail NA, Rafii MY, Mahmud TM, Hanafi MM, Miah G
    Mol Biol Rep, 2016 Dec;43(12):1347-1358.
    PMID: 27585572
    Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.
  3. Ahmed F, Rafii MY, Ismail MR, Juraimi AS, Rahim HA, Asfaliza R, et al.
    Biomed Res Int, 2013;2013:963525.
    PMID: 23484164 DOI: 10.1155/2013/963525
    Submergence or flood is one of the major harmful abiotic stresses in the low-lying countries and crop losses due to waterlogging are considerably high. Plant breeding techniques, conventional or genetic engineering, might be an effective and economic way of developing crops to grow successfully in waterlogged condition. Marker assisted selection (MAS) is a new and more effective approach which can identify genomic regions of crops under stress, which could not be done previously. The discovery of comprehensive molecular linkage maps enables us to do the pyramiding of desirable traits to improve in submergence tolerance through MAS. However, because of genetic and environmental interaction, too many genes encoding a trait, and using undesirable populations the mapping of QTL was hampered to ensure proper growth and yield under waterlogged conditions Steady advances in the field of genomics and proteomics over the years will be helpful to increase the breeding programs which will help to accomplish a significant progress in the field crop variety development and also improvement in near future. Waterlogging response of soybean and major cereal crops, as rice, wheat, barley, and maize and discovery of QTL related with tolerance of waterlogging, development of resistant variety, and, in addition, future prospects have also been discussed.
  4. Azizi P, Osman M, Hanafi MM, Sahebi M, Rafii MY, Taheri S, et al.
    Crit Rev Biotechnol, 2019 Nov;39(7):904-923.
    PMID: 31303070 DOI: 10.1080/07388551.2019.1632257
    A large number of rice agronomic traits are complex, multi factorial and polygenic. As the mechanisms and genes determining grain size and yield are largely unknown, the identification of regulatory genes related to grain development remains a preeminent approach in rice genetic studies and breeding programs. Genes regulating cell proliferation and expansion in spikelet hulls and participating in endosperm development are the main controllers of rice kernel elongation and grain size. We review here and discuss recent findings on genes controlling rice grain size and the mechanisms, epialleles, epigenomic variation, and assessment of controlling genes using genome-editing tools relating to kernel elongation.
  5. Chukwu SC, Rafii MY, Ramlee SI, Ismail SI, Hasan MM, Oladosu YA, et al.
    Mol Biol Rep, 2019 Feb;46(1):1519-1532.
    PMID: 30628024 DOI: 10.1007/s11033-019-04584-2
    Breeding for disease resistant varieties remains very effective and economical in controlling the bacterial leaf blight (BLB) of rice. Breeders have played a major role in developing resistant rice varieties against the BLB infection which has been adjudged to be a major disease causing significant yield reduction in rice. It would be difficult to select rice crops with multiple genes of resistance using the conventional approach alone. This is due to masking effect of genes including epistasis. In addition, conventional breeding takes a lot of time before a gene of interest can be introgressed. Linkage drag is also a major challenge in conventional approach. Molecular breeding involving markers has facilitated the characterization and introgression of BLB disease resistance genes. Biotechnology has brought another innovation in form of genetic engineering (transgenesis) of rice. Although, molecular breeding cannot be taken as a substitute for conventional breeding, molecular approach for combating BLB disease in rice is worthwhile given the demand for increased production of rice in a fast growing population of our society. This present article highlights the recent progress from conventional to molecular approach in breeding for BLB disease resistant rice varieties.
  6. Sahebi M, Hanafi MM, Mohidin H, Rafii MY, Azizi P, Idris AS, et al.
    Biomed Res Int, 2018;2018:1494157.
    PMID: 29721500 DOI: 10.1155/2018/1494157
    Oil palm (Elaeis guineensis Jacq) is one of the major sources of edible oil. Reducing the effect of Ganoderma, main cause of basal stem rot (BSR) on oil palm, is the main propose of this study. Understanding the oil palm defense mechanism against Ganoderma infection through monitoring changes in the secondary metabolite compounds levels before/after infection by Ganoderma under different fertilizing treatment is required. Oil palm requires macro- and microelements for growth and yield. Manipulating the nutrient for oil palm is a method to control the disease. The 3-4-month-old oil palm seedlings were given different macronutrient treatments to evaluate induction of defense related enzymes and production of secondary metabolite compounds in response to G. boninense inoculation. The observed trend of changes in the infected and uninfected seedlings was a slightly higher activity for β-1,3-glucanases, chitinase, peroxidase, and phenylalanine ammonia-lyase during the process of pathogenesis. It was found that PR proteins gave positive response to the interaction between oil palm seedlings and Ganoderma infection. Although the responses were activated systematically, they were short-lasting as the changes in enzymes activities appeared before the occurrence of visible symptoms. Effect of different nutrients doses was obviously observed among the results of the secondary metabolite compounds. Many identified/unidentified metabolite compounds were presented, of which some were involved in plant cell defense mechanism against pathogens, mostly belonging to alkaloids with bitter-tasting nitrogenous-compounds, and some had the potential to be used as new markers to detect basal stem rot at the initial step of disease.
  7. Oladosu Y, Rafii MY, Magaji U, Abdullah N, Miah G, Chukwu SC, et al.
    Biomed Res Int, 2018;2018:8936767.
    PMID: 30105259 DOI: 10.1155/2018/8936767
    The associations among yield-related traits and the pattern of influence on rice grain yield were investigated. This evaluation is important to determine the direct and indirect effects of various traits on yield to determine selection criteria for higher grain yield. Fifteen rice genotypes were evaluated under tropical condition at five locations in two planting seasons. The experiment was laid out in a randomized complete block design with three replications across the locations. Data were collected on vegetative and yield components traits. The pooled data based on the analysis of variance revealed that there were significant differences (p < 0.001) among the fifteen genotypes for all the characters studied except for panicle length and 100-grain weight. Highly significant and positive correlations at phenotypic level were observed in grain weight per hill (0.796), filled grains per panicle (0.702), panicles per hill (0.632), and tillers per hill (0.712) with yield per hectare, while moderate positive correlations were observed in flag leaf length to width ratio (0.348), days to flowering (0.412), and days to maturity (0.544). By contrast, unfilled grains per panicle (-0.225) and plant height (-0.342) had a negative significant association with yield per hectare. Filled grains per panicle (0.491) exhibited the maximum positive direct effect on yield followed by grain weight per hill (0.449), while unfilled grain per panicle (-0.144) had a negative direct effect. The maximum indirect effect on yield per hectare was recorded by the tillers per hill through the panicles per hill. Therefore, tillers per hill, filled grains per panicle, and grain weight per hill could be used as selection criteria for improving grain yield in rice.
  8. Taheri S, Abdullah TL, Rafii MY, Harikrishna JA, Werbrouck SPO, Teo CH, et al.
    Sci Rep, 2019 Nov 05;9(1):16395.
    PMID: 31685940 DOI: 10.1038/s41598-019-53129-x
    An amendment to this paper has been published and can be accessed via a link at the top of the paper.
  9. Nevame AYM, Emon RM, Malek MA, Hasan MM, Alam MA, Muharam FM, et al.
    Biomed Res Int, 2018;2018:1653721.
    PMID: 30065932 DOI: 10.1155/2018/1653721
    Occurrence of chalkiness in rice is attributed to genetic and environmental factors, especially high temperature (HT). The HT induces heat stress, which in turn compromises many grain qualities, especially transparency. Chalkiness in rice is commonly studied together with other quality traits such as amylose content, gel consistency, and protein storage. In addition to the fundamental QTLs, some other QTLs have been identified which accelerate chalkiness occurrence under HT condition. In this review, some of the relatively stable chalkiness, amylose content, and gel consistency related QTLs have been presented well. Genetically, HT effect on chalkiness is explained by the location of certain chalkiness gene in the vicinity of high-temperature-responsive genes. With regard to stable QTL distribution and availability of potential material resources, there is still feasibility to find out novel stable QTLs related to chalkiness under HT condition. A better understanding of those achievements is essential to develop new rice varieties with a reduced chalky grain percentage. Therefore, we propose the pyramiding of relatively stable and nonallelic QTLs controlling low chalkiness endosperm into adaptable rice varieties as pragmatic approach to mitigate HT effect.
  10. Alam MA, Juraimi AS, Rafii MY, Abdul Hamid A, Aslani F, Hasan MM, et al.
    Biomed Res Int, 2014;2014:296063.
    PMID: 24579078 DOI: 10.1155/2014/296063
    The methanolic extracts of 13 accessions of purslane were analyzed for their total phenol content (TPC), total flavonoid contents (TFC), and total carotenoid contents (TCC) and antioxidant activity of extracts was screened using FRAP assay and DPPH radical scavenging methods. The TPC, TFC, and TCC ranged from 0.96 ± 0.04 to 9.12 ± 0.29 mg GAE/g DW, 0.13 ± 0.04 to 1.44 ± 0.08 mg RE/g DW, and 0.52 ± 0.06 to 5.64 ± 0.09 mg (β-carotene equivalent) BCE/g DW, respectively. The DPPH scavenging (IC50) activity varied between 2.52 ± 0.03 mg/mL and 3.29 ± 0.01 mg/mL and FRAP ranged from 7.39 ± 0.08 to 104.2 ± 6.34  μmol TE/g DW. Among all the measured micro- and macrominerals K content was the highest followed by N, Na, Ca, Mg, P, Fe, Zn, and Mn. The overall findings proved that ornamental purslane was richer in antioxidant properties, whereas common purslane possesses more mineral contents than ornamental ones.
  11. Taheri S, Abdullah TL, Rafii MY, Harikrishna JA, Werbrouck SPO, Teo CH, et al.
    Sci Rep, 2019 Feb 28;9(1):3047.
    PMID: 30816255 DOI: 10.1038/s41598-019-39944-2
    Curcuma alismatifolia widely used as an ornamental plant in Thailand and Cambodia. This species of herbaceous perennial from the Zingiberaceae family, includes cultivars with a wide range of colours and long postharvest life, and is used as an ornamental cut flower, as a potted plant, and in exterior landscapes. For further genetic improvement, however, little genomic information and no specific molecular markers are available. The present study used Illumina sequencing and de novo transcriptome assembly of two C. alismatifolia cvs, 'Chiang Mai Pink' and 'UB Snow 701', to develop simple sequence repeat markers for genetic diversity studies. After de novo assembly, 62,105 unigenes were generated and 48,813 (78.60%) showed significant similarities versus six functional protein databases. In addition, 9,351 expressed sequence tag-simple sequence repeats (EST-SSRs) were identified with a distribution frequency of 12.5% total unigenes. Out of 8,955 designed EST-SSR primers, 150 primers were selected for the development of potential molecular markers. Among these markers, 17 EST-SSR markers presented a moderate level of genetic diversity among three C. alismatifolia cultivars, one hybrid, three Curcuma, and two Zingiber species. Three different genetic groups within these species were revealed using EST-SSR markers, indicating that the markers developed in this study can be effectively applied to the population genetic analysis of Curcuma and Zingiber species. This report describes the first analysis of transcriptome data of an important ornamental ginger cultivars, also provides a valuable resource for gene discovery and marker development in the genus Curcuma.
  12. Hashim A, Rafii MY, Yusuff O, Harun AR, Juraimi S, Misran A, et al.
    Heliyon, 2024 Feb 29;10(4):e25111.
    PMID: 38370252 DOI: 10.1016/j.heliyon.2024.e25111
    Induced mutation for the creation of desirable traits through chronic gamma irradiation provides an opportunity for the selection and development of new chili varieties. This study was conducted to assess the effects of different doses of chronic gamma irradiation on morpho-physiological traits in chili. Ten plants from each variety were exposed to different doses of chronic gamma irradiation for 277.02 h at three weeks after germination under gamma greenhouse facilities, with accumulative dose; 185.61Gy, 83.11Gy, 47.096Gy, 30.474Gy, 19.4Gy, 13.9Gy, 11.1Gy, 8.31Gy, 5.54Gy) and 2.77Gy respectively. Highly significant differences were observed among doses (Rings) of chronic gamma irradiation expressed in mean values for all investigated traits. Relatively moderate doses of chronic gamma irradiation represented by doses 47.096 Gy (Ring 4) and 19.40 Gy (Ring 6) resulted in significant stimulation for most of the studied characters. The highest heritability was recorded in days to flowering at 99.88 while the lowest was observed in fruit dry weight at 34.66 %. High genetic advance were recorded for most of the quantitative traits studied. In addition, a highly significant positive correlation was observed between total fruit per plant, total number of fruit per plant, plant height, fruit fresh weight, number of secondary branches, chlorophyll a, fruit dry weight, total chlorophyll content, stem diameter, fruit length and fruit girth. With increasing chronic gamma dose, mutagenic efficiency and efficacy generally increased. Induced variety of desirable features will considerably increase the chilli's amelioration through mutation breeding, leading to the development of improved varieties. The results of this research offer valuable information for the use of chronic gamma radiation in the mutations breeding of Capsicum annuum L., which will be advantageous for future breeding programs.
  13. Alam MA, Zaidul IS, Ghafoor K, Sahena F, Hakim MA, Rafii MY, et al.
    BMC Complement Altern Med, 2017 Mar 31;17(1):181.
    PMID: 28359331 DOI: 10.1186/s12906-017-1684-5
    BACKGROUND: This study was aimed to evaluate antioxidant and α-glucosidase inhibitory activity, with a subsequent analysis of total phenolic and total flavonoid content of methanol extract and its derived fractions from Clinacanthus nutans accompanied by comprehensive phytochemical profiling.

    METHODS: Liquid-liquid partition chromatography was used to separate methanolic extract to get hexane, ethyl acetate, butanol and residual aqueous fractions. The total antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging and ferric reducing antioxidant power assay (FRAP). The antidiabetic activity of methanol extract and its consequent fractions were examined by α-glucosidase inhibitory bioassay. The chemical profiling was carried out by gas chromatography coupled with quadrupole time-of-flight mass spectrometry (GC Q-TOF MS).

    RESULTS: The total yield for methanol extraction was (12.63 ± 0.98) % (w/w) and highest fractionated value found for residual aqueous (52.25 ± 1.01) % (w/w) as compared to the other fractions. Significant DPPH free radical scavenging activity was found for methanolic extract (63.07 ± 0.11) % and (79.98 ± 0.31) % for ethyl acetate fraction among all the fractions evaluated. Methanol extract was the most prominent in case of FRAP (141.89 ± 0.87 μg AAE/g) whereas most effective reducing power observed in ethyl acetate fraction (133.6 ± 0.2987 μg AAE/g). The results also indicated a substantial α-glucosidase inhibitory activity for butanol fraction (72.16 ± 1.0) % and ethyl acetate fraction (70.76 ± 0.49) %. The statistical analysis revealed that total phenolic and total flavonoid content of the samples had the significant (p 

  14. Sahebi M, Hanafi MM, van Wijnen AJ, Rice D, Rafii MY, Azizi P, et al.
    Gene, 2018 Jul 30;665:155-166.
    PMID: 29684486 DOI: 10.1016/j.gene.2018.04.050
    Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms.
  15. Sahebi M, Hanafi MM, Rafii MY, Mahmud TMM, Azizi P, Osman M, et al.
    Biomed Res Int, 2018;2018:3158474.
    PMID: 30175125 DOI: 10.1155/2018/3158474
    Drought tolerance is an important quantitative trait with multipart phenotypes that are often further complicated by plant phenology. Different types of environmental stresses, such as high irradiance, high temperatures, nutrient deficiencies, and toxicities, may challenge crops simultaneously; therefore, breeding for drought tolerance is very complicated. Interdisciplinary researchers have been attempting to dissect and comprehend the mechanisms of plant tolerance to drought stress using various methods; however, the limited success of molecular breeding and physiological approaches suggests that we rethink our strategies. Recent genetic techniques and genomics tools coupled with advances in breeding methodologies and precise phenotyping will likely reveal candidate genes and metabolic pathways underlying drought tolerance in crops. The WRKY transcription factors are involved in different biological processes in plant development. This zinc (Zn) finger protein family, particularly members that respond to and mediate stress responses, is exclusively found in plants. A total of 89 WRKY genes in japonica and 97 WRKY genes in O. nivara (OnWRKY) have been identified and mapped onto individual chromosomes. To increase the drought tolerance of rice (Oryza sativa L.), research programs should address the problem using a multidisciplinary strategy, including the interaction of plant phenology and multiple stresses, and the combination of drought tolerance traits with different genetic and genomics approaches, such as microarrays, quantitative trait loci (QTLs), WRKY gene family members with roles in drought tolerance, and transgenic crops. This review discusses the newest advances in plant physiology for the exact phenotyping of plant responses to drought to update methods of analysing drought tolerance in rice. Finally, based on the physiological/morphological and molecular mechanisms found in resistant parent lines, a strategy is suggested to select a particular environment and adapt suitable germplasm to that environment.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links