Displaying publications 521 - 540 of 772 in total

Abstract:
Sort:
  1. Baki MA, Hossain MM, Akter J, Quraishi SB, Haque Shojib MF, Atique Ullah AKM, et al.
    Ecotoxicol Environ Saf, 2018 Sep 15;159:153-163.
    PMID: 29747150 DOI: 10.1016/j.ecoenv.2018.04.035
    A contaminated aquatic environment may end up in the food chain and pose risks to tourist health in a tourist destination. To assess the health risk for tourists that visit St. Martine Island, which is a popular domestic and foreign tourist destination in Bangladesh, a study is undertaken to analyse the level of heavy metal contamination from chromium (Cr), manganese (Mn), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), lead (Pb), mercury (Hg) and iron (Fe) in six of the most consumed fish (L. fasciatus, R. kanagurta, H. nigrescens, P. cuneatus, P. annularis and S. rubrum) and five crustacean species, which consist of a shrimp (P. sculptilis), a lobster (P. versicolor) and three crabs (P. sanguinolentus, T. crenata and M. victor) captured. The samples were analysed for trace metals using atomic absorption spectrometer, and the concentrations of the metals were interpreted using the United State Environmental Protection Agency (USEPA) health risk model. The muscle and carapace/exoskeleton of shrimp, lobster and crabs were analysed and contained various concentrations of Pb, Hg, As, Cr, Cd, Fe, Cu, Zn and Mn. The hierarchy of the heavy metal in marine fish is Fe > Cd > Zn > Pb > Cu > Cr > Mn > Hg. The concentrations of Pb in the species R. kanagurta, H. nigresceus and S. rubrum were above the food safety guideline by Australia, New Zealand and other legislations in most marine fish and crustaceans. Crabs showed higher mean heavy metal concentrations than shrimp and lobster. Acceptable carcinogen ranges were observed in three fish species (R. kanagurata, H. nigresceus and S. rubrum) and one crustacean species (P. sculptilis) samples.
    Matched MeSH terms: Metals, Heavy/analysis*
  2. Tashakor M, Modabberi S, van der Ent A, Echevarria G
    Environ Monit Assess, 2018 May 08;190(6):333.
    PMID: 29737421 DOI: 10.1007/s10661-018-6668-5
    This study focused on the influence of ultramafic terrains on soil and surface water environmental chemistry in Peninsular Malaysia and in the State of Sabah also in Malaysia. The sampling included 27 soils from four isolated outcrops at Cheroh, Bentong, Bukit Rokan, and Petasih from Peninsular Malaysia and sites near Ranau in Sabah. Water samples were also collected from rivers and subsurface waters interacting with the ultramafic bodies in these study sites. Physico-chemical parameters (including pH, EC, CEC) as well as the concentration of major and trace elements were measured in these soils and waters. Geochemical indices (geoaccumulation index, enrichment factor, and concentration factor) were calculated. Al2O3 and Fe2O3 had relatively high concentrations in the samples. A depletion in MgO, CaO, and Na2O was observed as a result of leaching in tropical climate, and in relation to weathering and pedogenesis processes. Chromium, Ni, and Co were enriched and confirmed by the significant values obtained for Igeo, EF, and CF, which correspond to the extreme levels of contamination for Cr and high to moderate levels of contamination for Ni and Co. The concentrations of Cr, Ni, and Co in surface waters did not reflect the local geochemistry and were within the permissible ranges according to WHO and INWQS standards. Subsurface waters were strongly enriched by these elements and exceeded these standards. The association between Cr and Ni was confirmed by factor analysis. The unexpected enrichment of Cu in an isolated component can be explained by localized mineralization in Sabah.
    Matched MeSH terms: Metals, Heavy/analysis
  3. Looi LJ, Aris AZ, Yusoff FM, Isa NM, Haris H
    Environ Geochem Health, 2019 Feb;41(1):27-42.
    PMID: 29982907 DOI: 10.1007/s10653-018-0149-1
    Sediment can accumulate trace elements in the environment. This study profiled the magnitude of As, Ba, Cd, Co, Cu, Cr, Ni, Pb, Se, and Zn pollution in surface sediments of the west coast of Peninsular Malaysia. Trace elements were digested using aqua regia and were analyzed using the inductively coupled plasma-mass spectrometry. The extent of elemental pollution was evaluated using with the enrichment factor (EF) and geoaccumulation index (Igeo). This study found that the elemental distribution in the sediment in descending order was Zn > Ba > Cr > Pb > Cu > As > Ni > Co > Se > Cd. Zn concentrations in all samples were below the interim sediment quality guideline (ISQG) (124 mg/kg). In contrast, Cd concentrations (2.34 ± 0.01 mg/kg) at Station 31 (Merlimau) exceeded the ISQG (0.70 mg/kg), and the concentrations of As in the samples from Station 9 (Tanjung Dawai) exceeded the probable effect level (41.60 mg/kg). The Igeo and EF revealed that Station 9 and Station 31 were extremely enriched with Se and Cd, respectively. All stations posed low ecological risk, except Station 31, which had moderate ecological risk. The outputs from this study are expected to provide the background levels of pollutants and help develop regional sediment quality guideline values. This study is also important in aiding relevant authorities to set priorities for resources management and policy implementation.
    Matched MeSH terms: Metals, Heavy/analysis*
  4. Hafizah NF, Teh AH, Furusawa G
    Appl Biochem Biotechnol, 2019 Mar;187(3):770-781.
    PMID: 30073451 DOI: 10.1007/s12010-018-2849-5
    Persicobacter sp. CCB-QB2 belonging to the family Flammeovirga is an agarolytic bacterium and exhibits a diauxic growth in the presence of tryptone and agarose. A glycoside hydrolase (GH) 16 β-agarase, PdAgaC, was identified in the genome of the bacterium and was highly expressed during the second growth phase, indicating the agarase may play an important role in the diauxic growth. In this study, the catalytic domain of PdAgaC (PdAgaCgh) was cloned and characterized. PdAgaCgh showed thermostability at 50 °C and tolerance towards several detergents. In addition, the activity of PdAgaCgh after incubation with 0.1% of SDS and Triton X-100 increased approximately 1.2-fold. On the other hand, PdAgaCgh was sensitive to Fe2+, Ni2+, and Cu2+. The Km and Vmax of PdAgaCgh were 5.15 mg/ml and 2.9 × 103 U/mg, respectively. Interestingly, although the major hydrolytic product was neoagarobiose (NA2), monomeric sugar was also detected by thin-layer chromatographic analysis.
    Matched MeSH terms: Metals/pharmacology
  5. ELTurk M, Abdullah R, Rozainah MZ, Abu Bakar NK
    Mar Pollut Bull, 2018 Nov;136:1-9.
    PMID: 30509789 DOI: 10.1016/j.marpolbul.2018.08.063
    This study was carried out to evaluate the distribution, enrichment and ecological risk of heavy metals (arsenic (As), zinc (Zn), manganese (Mn), copper (Cu) and lead (Pb)) concentration in Kuala Selangor estuary at the Kuala Selangor Nature Park. The results suggested that As and Pb in sediment were as high as the background value, suggesting the presence of anthropogenic contamination. The risk assessment of sediment Igeo, CD, and PERI, on the other hand, showed low risk of heavy metals in Kuala Selangor estuary. Meanwhile, risk assessment code (RAC) results showed that Mn, As and Zn presented medium to high level of environmental risk. The translocation factor and bioaccumulation factors of heavy metal concentration by mangrove vegetation showed a variety of trends, which indicates the different partitioning and uptake ability of heavy metal in the tissues of different mangrove species. Therefore, underscores the importance of preserving the high diversity of mangroves at securing the health and productivity of the coastal region. These results may play a critical role in facilitating decision makers in managing the sustainability of mangrove forests.
    Matched MeSH terms: Metals, Heavy/analysis*
  6. Haris H, Aris AZ, Mokhtar MB, Looi LJ
    Chemosphere, 2020 Apr;245:125590.
    PMID: 31874324 DOI: 10.1016/j.chemosphere.2019.125590
    This study was conducted to assess the reliability of Nerita lineata as a bioindicator for metals in sediment and the factors influencing the accumulation of metals and methylmercury in its soft tissue. The two matrices were analyzed for Co, Cr, Cu, THg, MeHg, Mn, Ni, Pb, and Zn. The metal concentrations in N. lineata were comparable to previously reported results with the exception of Ni which was higher. Cu, Mn, and Pb in N. lineata were significantly (p 
    Matched MeSH terms: Metals, Heavy/analysis*
  7. Tariq FS, Samsuri AW, Karam DS, Aris AZ, Jamilu G
    Environ Monit Assess, 2019 Mar 21;191(4):232.
    PMID: 30900076 DOI: 10.1007/s10661-019-7359-6
    This study was conducted to determine the effects of rice husk ash (RHA) and Fe-coated rice husk ash (Fe-RHA) on the bioavailability and mobility of As, Cd, and Mn in mine tailings. The amendments were added to the tailings at 0, 5, 10, or 20% (w/w) and the mixtures were incubated for 0, 7, 15, 30, 45, and 60 days. The CaCl2 extractable As, Cd, and Mn in the amended tailings were determined at each interval of incubation period. In addition, the tailings mixture was leached with simulated rain water (SRW) every week from 0 day (D 0) until day 60 (D 60). The results showed that both RHA and Fe-RHA application significantly decreased the CaCl2-extractable Cd and Mn but increased that of As in the tailings throughout the incubation period. Consequently, addition of both RHA and Fe-RHA leached out higher amount of As from the tailings but decreased Cd and Mn concentration compared to the controls. The amount of As leached from the Fe-RHA-amended tailings was less than that from RHA-amended tailings. Application of both RHA and Fe-RHA could be an effective way in decreasing the availability of cationic heavy metals (Cd and Mn) in the tailings but these amendments could result in increasing the availability of anionic metalloid (As). Therefore, selection of organic amendments to remediate metal-contaminated tailings must be done with great care because the outcomes might be different among the elements.
    Matched MeSH terms: Metals, Heavy/analysis*
  8. Kian LK, Jawaid M, Nasef MM, Fouad H, Karim Z
    Int J Biol Macromol, 2021 Dec 01;192:654-664.
    PMID: 34655581 DOI: 10.1016/j.ijbiomac.2021.10.042
    In this study, poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) dual-layer membranes filled with 0-3 wt% cellulose nanowhisker (CNWs) were fabricated with aim to remove metal ions from wastewater. An integrated method was employed in the membrane fabrication process by combining water vapor-induced and crystallization-induced phase inversions. The membrane thickness was measured in between 11 and 13 μm, which did not pose significant flux deviation during filtration process. The 3% CNW filled membrane showed prominent and well-laminated two layers structure. Meanwhile, the increase in CNWs from 0 to 3% loadings could improve the membrane porosity (43-74%) but reducing pore size (2.45-0.54 μm). The heat resistance of neat membrane enhanced by 1% CNW but decreased with loadings of 2-3% CNWs due to flaming behavior of sulphated nanocellulose. Membrane with 3% CNW displayed the tensile strength (23.5 MPa), elongation at break (7.1%), and Young's modulus (0.75 GPa) as compared to other samples. For wastewater filtration performance, the continuous operation test showed that 3% CNW filled membrane exhibited the highest removal efficiency for both cobalt and nickel metal ions reaching to 83% and 84%, respectively. We concluded that CNWs filled dual-layer membranes have potential for future development in the removal of heavy metal ions from wastewater streams.
    Matched MeSH terms: Metals, Heavy/chemistry*
  9. Rakib MRJ, Jolly YN, Dioses-Salinas DC, Pizarro-Ortega CI, De-la-Torre GE, Khandaker MU, et al.
    Sci Rep, 2021 10 25;11(1):20999.
    PMID: 34697391 DOI: 10.1038/s41598-021-99750-7
    Although coastal water marine algae have been popularly used by others as indicators of heavy metal pollution, data within the Bay of Bengal for the estuarine Cox's Bazar region and Saint Martin's Island has remained scarce. Using marine algae, the study herein forms an effort in biomonitoring of metal contamination in the aforementioned Bangladesh areas. A total of 10 seaweed species were collected, including edible varieties, analyzed for metal levels through the use of the technique of EDXRF. From greatest to least, measured mean metal concentrations in descending order have been found to be K > Fe > Zr > Br > Sr > Zn > Mn > Rb > Cu > As > Pb > Cr > Co. Potential toxic heavy metals such as Pb, As, and Cr appear at lower concentration values compared to that found for essential mineral elements. However, the presence of Pb in Sargassum oligocystum species has been observed to exceed the maximum international guidance level. Given that some of the algae species are cultivated for human consumption, the non-carcinogenic and carcinogenic indices were calculated, shown to be slightly lower than the maxima recommended by the international organizations. Overall, the present results are consistent with literature data suggesting that heavy metal macroalgae biomonitoring may be species-specific. To the best of our knowledge, this study represents the first comprehensive macroalgae biomonitoring study of metal contamination from the coastal waters of Cox's Bazar and beyond.
    Matched MeSH terms: Metals, Heavy/analysis*
  10. Othman M, Latif MT, Mohamed AF
    Ecotoxicol Environ Saf, 2018 Feb;148:293-302.
    PMID: 29080527 DOI: 10.1016/j.ecoenv.2017.10.034
    This study intends to determine the health impacts from two office life cycles (St.1 and St.2) using life cycle assessment (LCA) and health risk assessment of indoor metals in coarse particulates (particulate matter with diameters of less than 10µm). The first building (St.1) is located in the city centre and the second building (St.2) is located within a new development 7km away from the city centre. All life cycle stages are considered and was analysed using SimaPro software. The trace metal concentrations were determined by inductively couple plasma-mass spectrometry (ICP-MS). Particle deposition in the human lung was estimated using the multiple-path particle dosimetry model (MPPD). The results showed that the total human health impact for St.1 (0.027 DALY m-2) was higher than St.2 (0.005 DALY m-2) for a 50-year lifespan, with the highest contribution from the operational phase. The potential health risk to indoor workers was quantified as a hazard quotient (HQ) for non-carcinogenic elements, where the total values for ingestion contact were 4.38E-08 (St.1) and 2.59E-08 (St.2) while for dermal contact the values were 5.12E-09 (St.1) and 2.58E-09 (St.2). For the carcinogenic risk, the values for dermal and ingestion routes for both St.1 and St.2 were lower than the acceptable limit which indicated no carcinogenic risk. Particle deposition for coarse particles in indoor workers was concentrated in the head, followed by the pulmonary region and tracheobronchial tract deposition. The results from this study showed that human health can be significantly affected by all the processes in office building life cycle, thus the minimisation of energy consumption and pollutant exposures are crucially required.
    Matched MeSH terms: Metals/analysis*
  11. Rizwan M, Alias R, Zaidi UZ, Mahmoodian R, Hamdi M
    J Biomed Mater Res A, 2018 02;106(2):590-605.
    PMID: 28975693 DOI: 10.1002/jbm.a.36259
    Plasma electrolytic oxidation (PEO) is an advance technique to develop porous oxidation layer on light metals, primarily to enhance corrosion and wear resistance. The oxidation layer can also offer a wide variety of mechanical, biomedical, tribological, and antibacterial properties through the incorporation of several ions and particles. Due to the increasing need of antimicrobial surfaces for biomedical implants, antibacterial PEO coatings have been developed through the incorporation of antibacterial agents. Metallic nanoparticles that have been employed most widely as antibacterial agents are reported to demonstrate serious health and environmental threats. To overcome the current limitations of these coatings, there is a significant need to develop antibacterial surfaces that are not harmful for patient's health and environment. Attention of the readers has been directed to utilize bioactive glasses as antibacterial agents for PEO coatings. Bioactive glasses are well known for their excellent bioactivity, biocompatibility, and antibacterial character. PEO coatings incorporated with bioactive glasses can provide environment-friendly antimicrobial surfaces with exceptional bioactivity, biocompatibility, and osseointegration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 590-605, 2018.
    Matched MeSH terms: Metals/pharmacology*
  12. Hariri A, Mohamad Noor N, Paiman NA, Ahmad Zaidi AM, Zainal Bakri SF
    Int J Occup Saf Ergon, 2018 Dec;24(4):646-651.
    PMID: 28849717 DOI: 10.1080/10803548.2017.1368950
    Welding operations are rarely conducted in an air-conditioned room. However, a company would set its welding operations in an air-conditioned room to maintain the humidity level needed to reduce hydrogen cracks in the specimen being welded. This study intended to assess the exposure to metal elements in the welders' breathing zone and toenail samples. Heavy metal concentration was analysed using inductively coupled plasma mass spectrometry. The lung function test was also conducted and analysed using statistical approaches. Chromium and manganese concentrations in the breathing zone exceeded the permissible exposure limit stipulated by Malaysian regulations. A similar trend was obtained in the concentration of heavy metals in the breathing zone air sampling and in the welders' toenails. Although there was no statistically significant decrease in the lung function of welders, it is suggested that exposure control through engineering and administrative approaches should be considered for workplace safety and health improvement.
    Matched MeSH terms: Metals, Heavy/analysis*
  13. Khandaker MU, Asaduzzaman K, Sulaiman AFB, Bradley DA, Isinkaye MO
    Mar Pollut Bull, 2018 Feb;127:654-663.
    PMID: 29475708 DOI: 10.1016/j.marpolbul.2017.12.055
    Study is made of the radioactivity in the beach sands of Langkawi island, a well-known tourist destination. Investigation is made of the relative presence of the naturally occurring radionuclide 40K and the natural-series indicator radionuclides 226Ra and 232Th, the gamma radiation exposure also being estimated. Sample quantities of black and white sand were collected for gamma ray spectrometry, yielding activity concentration in black sands of 226Ra, 232Th and 40K from 451±9 to 2411±65Bqkg-1 (mean of 1478Bqkg-1); 232±4 to 1272±35Bqkg-1 (mean of 718Bqkg-1) and 61±6 to 136±7Bqkg-1 (mean of 103Bqkg-1) respectively. Conversely, in white sands the respective values for 226Ra and 232Th were appreciably lower, at 8.3±0.5 to 13.7±1.4Bqkg-1 (mean of 9.8Bqkg-1) and 4.5±0.7 to 9.4±1.0Bqkg-1 (mean of 5.9Bqkg-1); 40K activities differed insubstantially from that in black sands, at 85±4 to 133±7Bqkg-1 with a mean of 102Bqkg-1. The mean activity concentrations of 226Ra and 232Th in black sands are comparable with that of high background areas elsewhere in the world. The heavy minerals content gives rise to elevated 226Ra and 232Th activity concentrations in all of black sand samples. Evaluation of the various radiological risk parameters points to values which in some cases could be in excess of recommendations providing for safe living and working. Statistical analysis examines correlations between the origins of the radionuclides, also identifying and classifying the radiological parameters. Present results may help to form an interest in rare-earth resources for the electronics industry, power generation and the viability of nuclear fuels cycle resources.
    Matched MeSH terms: Metals, Rare Earth/chemistry*
  14. Nasyitah Sobihah N, Ahmad Zaharin A, Khairul Nizam M, Ley Juen L, Kyoung-Woong K
    Chemosphere, 2018 Apr;197:318-324.
    PMID: 29360594 DOI: 10.1016/j.chemosphere.2017.12.187
    Mariculture fish contains a rich source of protein, but some species may bioaccumulate high levels of heavy metals, making them unsafe for consumption. This study aims to identify heavy metal concentration in Lates calcarifer (Barramudi), Lutjanus campechanus (Red snapper) and Lutjanus griseus (Grey snapper). Three species of mariculture fish, namely, L. calcarifer, L. campechanus and L. griseus were collected for analyses of heavy metals. The concentration of heavy metal (As, Cd, Cu, Cr, Fe, Pb, Mn, Ni, Se, and Zn) was determined using inductive coupled plasma mass spectrometry (ICP-MS). The distribution of heavy metals mean concentration in muscle is Zn > Fe > As > Se > Cr > Cu > Mn > Pb > Ni > Cd for L. calcarifer, Fe > Zn > Cr > As > Ni > Mn > Se > Cu > Pb > Cd for L. campechanus and Fe > Zn > Cr > Ni > Se > Cu > As > Mn > Pb > Cd for L. griseus. Among all of the species under investigation, the highest concentration of Fe was found in the muscle tissue of L. campechanus (19.985 ± 1.773 mg kg-1) and liver tissue of L. griseus (58.248 ± 8.736 mg kg-1). Meanwhile, L. calcarifer has the lowest concentration of Cd in both muscle (0.007 ± 0.004 mg kg-1) and liver tissue (0.027 ± 0.016 mg kg-1). The heavy metal concentration in muscle tissue is below the permissible limit guidelines stipulated by the Food & Agriculture Organization, 1983 and Malaysia Food Act, 1983. The concentration of heavy metals varies significantly among fish species and tissues. L. campechanus was found to have a higher ability to accumulate heavy metals as compared to the other two species (p 
    Matched MeSH terms: Metals, Heavy/analysis*
  15. Koki IB, Low KH, Juahir H, Abdul Zali M, Azid A, Zain SM
    Chemosphere, 2018 Mar;195:641-652.
    PMID: 29287272 DOI: 10.1016/j.chemosphere.2017.12.112
    Evaluation of health risks due to heavy metals exposure via drinking water from ex-mining ponds in Klang Valley and Melaka has been conducted. Measurements of As, Cd, Pb, Mn, Fe, Na, Mg, Ca, and dissolved oxygen, pH, electrical conductivity, total dissolved solid, ammoniacal nitrogen, total suspended solid, biological oxygen demand were collected from 12 ex-mining ponds and 9 non-ex-mining lakes. Exploratory analysis identified As, Cd, and Pb as the most representative water quality parameters in the studied areas. The metal exposures were simulated using Monte Carlo methods and the associated health risks were estimated at 95th and 99th percentile. The results revealed that As was the major risk factor which might have originated from the previous mining activity. For Klang Valley, adults that ingested water from those ponds are at both non-carcinogenic and carcinogenic risks, while children are vulnerable to non-carcinogenic risk; for Melaka, only children are vulnerable to As complications. However, dermal exposure showed no potential health consequences on both adult and children groups.
    Matched MeSH terms: Metals, Heavy/analysis*
  16. Ali MM, Ali ML, Islam MS, Rahman MZ
    Water Sci Technol, 2018 Mar;77(5-6):1418-1430.
    PMID: 29528329 DOI: 10.2166/wst.2018.016
    This study was conducted to assess the levels of toxic metals like arsenic (As), chromium (Cr), cadmium (Cd), and lead (Pb) in water and sediments of the Pasur River in Bangladesh. The ranges of Cr, As, Cd, Pb in water were 25.76-77.39, 2.76-16.73, 0.42-2.98 and 12.69-42.67 μg/L and in sediments were 20.67-83.70, 3.15-19.97, 0.39-3.17 and 7.34-55.32 mg/kg. The level of studied metals in water samples exceeded the safe limits of drinking water, indicating that water from this river is not safe for drinking and cooking. Certain indices, including pollution load index (PLI) and contamination factor (Cif) were used to assess the ecological risk. The PLI indicated progressive deterioration of sediments by the studied metals. Potential ecological risks of metals in sediment indicated low to considerable risk. However, the Cif values of Cd ranged from 0.86 to 8.37 revealed that the examined sediments were strongly impacted by Cd. Considering the severity of potential ecological risk (PER) for single metal (Eir), the descending order of contaminants was Cd > Pb > As > Cr. According the results, some treatment scheme must formulate and implement by the researchers and related management organizations to save the Pasur River from metals contamination.
    Matched MeSH terms: Metals, Heavy/analysis
  17. Lee HY, Subramaniam N, Nordin MM
    Singapore Med J, 1996 Feb;37(1):55-60.
    PMID: 8783915
    To compare the advantages and disadvantages of the New Bird metal cups and silicone cups in terms of maternal and foetal outcome. To study the adverse effects and factors associated with failed vacuum deliveries.
    Matched MeSH terms: Metals*
  18. Meena RAA, Sathishkumar P, Ameen F, Yusoff ARM, Gu FL
    Environ Sci Pollut Res Int, 2018 Feb;25(5):4134-4148.
    PMID: 29247419 DOI: 10.1007/s11356-017-0966-2
    With growing population and urbanization, there is an increasing exploitation of natural resources, and this often results to environmental pollution. In this review, the levels of heavy metal in lentic compartments (water, sediment, fishes, and aquatic plants) over the past two decades (1997-2017) have been summarized to evaluate the current pollution status of this ecosystem. In all the compartments, the heavy metals dominated are zinc followed by iron. The major reason could be area mineralogy and lithogenic sources. Enormous quantity of metals like iron in estuarine sediment is a very natural incident due to the permanently reducing condition of organic substances. Contamination of cadmium, lead, and chromium was closely associated with anthropogenic origin. In addition, surrounding land use and atmospheric deposition could have been responsible for substantial pollution. The accumulation of heavy metals in fishes and aquatic plants is the result of time-dependent deposition in lentic ecosystems. Moreover, various potential risk assessment methods for heavy metals were discussed. This review concludes that natural phenomena dominate the accumulation of essential heavy metals in lentic ecosystems compared to anthropogenic sources. Amongst other recent reviews on heavy metals from other parts of the world, the present review is executed in such a way that it explains the presence of heavy metals not only in water environment, but also in the whole of the lentic system comprising sediment, fishes, and aquatic plants.
    Matched MeSH terms: Metals, Heavy/analysis
  19. Khan AM, Yusoff I, Bakar NKA, Bakar AFA, Alias Y
    Environ Sci Pollut Res Int, 2016 Dec;23(24):25039-25055.
    PMID: 27677993 DOI: 10.1007/s11356-016-7641-x
    A study was carried out to determine the level of rare earth elements (REEs) in water and sediment samples from ex-mining lakes and River in Kinta Valley, Perak, Malaysia. Surface water and sediments from an ex-mining lake and Kinta River water samples were analyzed for REEs by inductively coupled plasma mass spectrometry. The total concentration of REEs in the ex-mining lake water samples and sediments were found to be 3685 mg/l and 14159 mg/kg, respectively, while the total concentration of REEs in Kinta River water sample was found to be 1224 mg/l. REEs in mining lake water were found to be within 2.42 mg/l (Tb) to 46.50 mg/l (Ce), while for the Kinta River, it was 1.33 mg/l (Ho) to 29.95 mg/l (Ce). Sediment samples were also found with REEs from 9.81 mg/kg (Ho) to 765.84 mg/kg (Ce). Ce showed the highest average concentrations for mining lake (3.88 to 49.08 mg/l) and Kinta River (4.44 to 33.15 mg/l) water samples, while the concentration of La was the highest (11.59 to 771.61 mg/kg) in the mining lake sediment. Lu was shown to have the highest enrichment of REEs in ex-mining lake sediments (107.3). Multivariate statistical analyses such as factor analysis and principal component analysis indicated that REEs were associated and controlled by mixed origin, with similar contributions from anthropogenic and geogenic sources. The speciation study of REEs in ex-tin mining sediments using a modified five-stage sequential extraction procedure indicated that yttrium (Y), gadolinium (Gd), and lanthanum (La) were obtained at higher percentages from the adsorbed/exchanged/carbonate fraction. The average potential mobility of the REEs was arranged in a descending order: Yb > Gd > Y = Dy > Pr > Er > Tm > Eu > Nd > Tb > Sc > Lu > Ce > La, implying that under favorable conditions, these REEs could be released and subsequently pollute the environment.
    Matched MeSH terms: Metals, Rare Earth/analysis*
  20. Kusin FM, Rahman MS, Madzin Z, Jusop S, Mohamat-Yusuff F, Ariffin M, et al.
    Environ Sci Pollut Res Int, 2017 Jan;24(2):1306-1321.
    PMID: 27771881 DOI: 10.1007/s11356-016-7814-7
    Recent bauxite mining activities in the vicinity of Kuantan, Pahang, have been associated with apparent environmental quality degradation and have raised environmental concerns among the public. This study was carried out to evaluate the overall ecological impacts on water and sediment quality from the bauxite mining activities. Water and sediment samples were collected at seven sampling locations within the bauxite mining areas between June and December 2015. The water samples were analyzed for water quality index (WQI) and distribution of major and trace element geochemistry. Sediment samples were evaluated based on geochemical indices, i.e., the enrichment factor (EF) and geoaccumulation index (I geo). Potential ecological risk index was estimated to assess the degree to which sediments of the mine-impacted areas have been contaminated with heavy metals. The results showed that WQIs of some locations were classified as slightly polluted and contained metal contents exceeding the recommended guideline values. The EFs indicated minimal to moderate enrichment of metals (Pb, Cu, Zn, Mn, As, Cd, Cr, Ni, Co, and Sr) in the sediments. I geo showed slightly to partially polluted sediments with respect to As at some locations. The potential ecological risk index (RI) showed that As posed the highest potential ecological risk with RI of 52.35-60.92 at two locations, while other locations indicated low risk. The findings from this study have demonstrated the impact of recent bauxite mining activities, which might be of importance to the local communities and relevant authorities to initiate immediate rehabilitation phase of the impacted area.
    Matched MeSH terms: Metals, Heavy/analysis
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links