Displaying publications 501 - 520 of 1298 in total

Abstract:
Sort:
  1. Aiemeeza Rajali, Siti Fauzza Ahmad
    MyJurnal
    Introduction: The compatibility of denture cleanser is crucial in the prevention of failure of adhesion between silicone soft liner and acrylic denture base, thus ensuring the durability of the prosthesis. This scanning electron microscope (SEM) study was to determine the mode of failure and measured the gap formation between silicone soft liners and Polymethylmethacrylate (PMMA) denture base after immersion in denture cleansers. Methods: A total of 135 specimens of PMMA denture base lined with three different silicone soft liners (GC Reline Soft, Mollosil and Tokuyama Sofreliner Tough) were immersed into denture cleansers (Polident® and Stearadent) daily and stored in distilled water at 37±1°C. Specimens were examined and sectioned at 2.5mm and 5.0mm from the margin after 1 day, 30 days and 90 days before analyzed. Results: No significant difference detected in the mode of failure and gap formation after one-day immersion. Adhesive failure was the commonest failure at the margin after 30 days (71.11%) and after 90 days (95.56%). However, 33.33% of specimens showed mixed failure at 5.0mm sectioned after 90 days. A significant difference of gap formation was demonstrated from Mollosil in Steradent at the margin and at 2.5 mm sectioned after 30 days and after 90 days (p
    Matched MeSH terms: Microscopy, Electron, Scanning
  2. Syarifah SM, Mohd Kassim AS, Mohd Aripin A, Chan CM, Zainulabidin MH, Ishak N, et al.
    Data Brief, 2021 Jun;36:107030.
    PMID: 34026964 DOI: 10.1016/j.dib.2021.107030
    This article presents experimental data on oil palm biomass (oil palm leaves, oil palm trunk and empty fruit bunch) handsheet production characterization by biodelignification treatment using Bacillus cereus extracted from termite gut (Coptotermus curvignathus). It associates the lignocellulose chemical composition obtained via technical association pulp and paper industry TAPPI T 222 om-02 testing on lignin content reduction determination, holocellulose and hemicellulose content determination (Kurscher-Hoffner method). Several data obtained for handsheet characterization presents brightness, opacity, contrast ratio, din transparency, thickness, bursting and tearing indexes are collected. Handsheet surface morphology was also observed on ratio of gaps differences between fiber bonding conducted using scanning electron microscope (SEM) and ImageJ software. The raw data findings supplement chemical composition analysis for both untreated and treated substrates on handsheet quality performance check as presented in the research article "Bio-Mechanical Pulping of Bacteria Pre-Treatment on Oil Palm Biomass for Handsheet Production" [1]. For understanding correlations into the difference among lignocellulose content composition which affect the handsheet formation and mechanical strength refer to article from this research [1]. This dataset is made publicly available for optimizing alternative waste material reuse in the pulp and paper industrial section.
    Matched MeSH terms: Microscopy, Electron, Scanning
  3. AZRILAWANI AHMAD, NUR ANIS ZAFIRAH ZAINORDIN, NUR AMIRA JAAFAR
    MyJurnal
    A preliminary assessment of a simple and rapid electrochemical method was carried out to analyse imidacloprid (IMI) in water samples using cyclic voltammetry (CV) based on modified screen-printed gold electrode (SPGE). Self-assembled monolayer (SAM) was optimized using 11-mercaptoundecanoic acid (11-MUA) with several parameters such as scan rates, type of supporting electrolyte, and pH of the supporting electrolyte. The modified SPGE showed high suppressed current against the potential due to the formation of a monolayer on the electrode surface. Surface morphology of the electrode was analysed using Scanning Electron Microscopy (SEM) confirming that 11-MUA was present on the modified SPGE. The water samples were collected from GM Peladang, Kuala Terengganu and two locations at Universiti Malaysia Terengganu. Method detection limit was expressed as limit of detection (LOD) and limit of quantification (LOQ) for modified SPGE which were calculated at 3.784 and 12.613 mg/L in water samples, respectively. This study showed that the reduction peak current observed on the modified electrode was lower compared with oxidation peak current. Hence, gold is unsuitable for IMI detection.
    Matched MeSH terms: Microscopy, Electron, Scanning
  4. Johari MAF, Mazlan SA, Nasef MM, Ubaidillah U, Nordin NA, Aziz SAA, et al.
    Sci Rep, 2021 May 25;11(1):10936.
    PMID: 34035434 DOI: 10.1038/s41598-021-90484-0
    The widespread use of magnetorheological elastomer (MRE) materials in various applications has yet to be limited due to the fact that there are substantial deficiencies in current experimental and theoretical research on its microstructural durability behavior. In this study, MRE composed of silicon rubber (SR) and 70 wt% of micron-sized carbonyl iron particles (CIP) was prepared and subjected to stress relaxation evaluation by torsional shear load. The microstructure and particle distribution of the obtained MRE was evaluated by a field emission scanning electron microscopy (FESEM). The influence of constant low strain at 0.01% is the continuing concern within the linear viscoelastic (LVE) region of MRE. Stress relaxation plays a significant role in the life cycle of MRE and revealed that storage modulus was reduced by 8.7%, normal force has weakened by 27%, and stress performance was reduced by 6.88% along approximately 84,000 s test duration time. This time scale was the longest ever reported being undertaken in the MRE stress relaxation study. Novel micro-mechanisms that responsible for the depleted performance of MRE was obtained by microstructurally observation using FESEM and in-phase mode of atomic force microscope (AFM). Attempts have been made to correlate strain localization produced by stress relaxation, with molecular deformation in MRE amorphous matrix. Exceptional attention was focused on the development of molecular slippage, disentanglement, microplasticity, microphase separation, and shear bands. The relation between these microstructural phenomena and the viscoelastic properties of MRE was diffusely defined and discussed. The presented MRE is homogeneous with uniform distribution of CIP. The most significant recent developments of systematic correlation between the effects of microstructural deformation and durability performance of MRE under stress relaxation has been observed and evaluated.
    Matched MeSH terms: Microscopy, Electron, Scanning
  5. Shitu IG, Liew JYC, Talib ZA, Baqiah H, Awang Kechik MM, Ahmad Kamarudin M, et al.
    ACS Omega, 2021 Apr 27;6(16):10698-10708.
    PMID: 34056223 DOI: 10.1021/acsomega.1c00148
    A rapid, sustainable, and ecologically sound approach is urgently needed for the production of semiconductor nanomaterials. CuSe nanoparticles (NPs) were synthesized via a microwave-assisted technique using CuCl2·2H2O and Na2SeO3 as the starting materials. The role of the irradiation time was considered as the primary concern to regulate the size and possibly the shape of the synthesized nanoparticles. A range of characterization techniques was used to elucidate the structural and optical properties of the fabricated nanoparticles, which included X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy, field emission scanning electron microscopy, Raman spectroscopy (Raman), UV-Visible diffuse reflectance spectroscopy (DRS), and photoluminescence spectroscopy (PL). The mean crystallite size of the CuSe hexagonal (Klockmannite) crystal structure increased from 21.35 to 99.85 nm with the increase in irradiation time. At the same time, the microstrain and dislocation density decreased from 7.90 × 10-4 to 1.560 × 10-4 and 4.68 × 10-2 to 1.00 × 10-2 nm-2, respectively. Three Raman vibrational bands attributed to CuSe NPs have been identified in the Raman spectrum. Irradiation time was also seen to play a critical role in the NP optical band gap during the synthesis. The decrease in the optical band gap from 1.85 to 1.60 eV is attributed to the increase in the crystallite size when the irradiation time was increased. At 400 nm excitation wavelength, a strong orange emission centered at 610 nm was observed from the PL measurement. The PL intensity is found to increase with an increase in irradiation time, which is attributed to the improvement in crystallinity at higher irradiation time. Therefore, the results obtained in this study could be of great benefit in the field of photonics, solar cells, and optoelectronic applications.
    Matched MeSH terms: Microscopy, Electron, Scanning
  6. A Al-Kafaween M, Mohd Hilmi AB, A Nagi Al-Jamal H, A Elsahoryi N, Jaffar N, Khairi Zahri M
    Iran J Biotechnol, 2020 Oct;18(4):e2542.
    PMID: 34056021 DOI: 10.30498/IJB.2020.2542
    Background: Honey has been known as a traditional medicine for centuries with its antibacterial properties. It is considered one of the most enduring substances used in wound management.

    Objectives: This study aimed to: (i) evaluate the effects of Malaysian Trigona honey on bacterial structure and (ii) assess the anti-virulence potential of this honey by examining their impacts on the expression of selected genes (involved in stress survival and biofilm formation) in a test organism.

    Materials and Methods: Trigona honey's impacts on the bacterial structure (cell morphology) and the expression profiles of select Pseudomonas Aeruginosa and Streptococcus Pyogenes genes were examined using scanning electron microscopy (SEM) and real-time PCR (RT-qPCR) analysis, respectively.

    Results: SEM showed that the decreased cell density deformed, disrupted, and damaged cells for both bacteria. RT-qPCR showed that the expression of fleN, fleQ, and fleR genes of P.aeruginosa were decreased, 4.26-fold, 3.80-fold and 2.66- fold respectively. In addition, scpA, ftsY, and emm13 of S.pyogenes were decreased, 2.87-fold, 3.24-fold, and 4.65-fold respectively.

    Conclusion: Our results indicate that Trigona honey may be an effective inhibitor and virulence modulator of P. aeruginosa and S. pyogenes via multiple molecular targets. This deduction needs to be investigated in vivo.

    Matched MeSH terms: Microscopy, Electron, Scanning
  7. Alex Zhen Kai Lo, Siti Khadijah Lukman, Syafiqah Saidin
    MyJurnal
    Introduction: : Ginseng is a type of traditional medicine that has been used for thousand years to treat various dis- eases and has been proven effective in treating cardiovascular diseases. Incorporation of polyaniline (PANI) which is a type of conductive polymer together with ginseng into poly(lactic-co-glycolic acid) (PLGA) microcapsules is neces- sary for the treatment of cardiovascular diseases as the polymer will control drug release and the electroconductivity of PANI is beneficial on myocardium cells. Methods: Therefore, this project involved the encapsulation of ginseng inside PLGA/PANI microcapsules. The encapsulation of ginseng inside the microcapsules was verified through the identification of chemical composition of ginseng, PLGA and PANI using attenuated total reflectance-Fourier trans- form infrared spectroscopy (ATR-FTIR). Results: The results of scanning electron microscope (SEM) showed the formation of microspheres where the microcapsule size was decreased from 3.14±1.87 μm to 1.98±1.30 μm as the concentration of PANI increased. The distribution of microcapsules size was more homogeneous in the high con- centration of PANI as been determined through the histogram analysis. In addition, the fluorescence analysis demon- strated the efficiency of ginseng encapsulation inside PLGA/PANI microcapsules through the appearance of stained ginseng inside the microcapsules. Conclusion: As a conclusion, the ginseng was successfully encapsulated within PLGA/PANI microcapsules that will be beneficial in drug delivery application, specifically in the cardiovascular area.
    Matched MeSH terms: Microscopy, Electron, Scanning
  8. Akhtar MN, Khan M, Khan SA, Afzal A, Subbiah R, Ahmad SN, et al.
    Materials (Basel), 2021 May 18;14(10).
    PMID: 34070060 DOI: 10.3390/ma14102639
    In the present investigation, the non-recrystallization temperature (TNR) of niobium-microalloyed steel is determined to plan rolling schedules for obtaining the desired properties of steel. The value of TNR is based on both alloying elements and deformation parameters. In the literature, TNR equations have been developed and utilized. However, each equation has certain limitations which constrain its applicability. This study was completed using laboratory-grade low-carbon Nb-microalloyed steels designed to meet the API X-70 specification. Nb- microalloyed steel is processed by the melting and casting process, and the composition is found by optical emission spectroscopy (OES). Multiple-hit deformation tests were carried out on a Gleeble® 3500 system in the standard pocket-jaw configuration to determine TNR. Cuboidal specimens (10 (L) × 20 (W) × 20 (T) mm3) were taken for compression test (multiple-hit deformation tests) in gleeble. Microstructure evolutions were carried out by using OM (optical microscopy) and SEM (scanning electron microscopy). The value of TNR determined for 0.1 wt.% niobium bearing microalloyed steel is ~ 951 °C. Nb- microalloyed steel rolled at TNR produce partially recrystallized grain with ferrite nucleation. Hence, to verify the TNR value, a rolling process is applied with the finishing rolling temperature near TNR (~951 °C). The microstructure is also revealed in the pancake shape, which confirms TNR.
    Matched MeSH terms: Microscopy, Electron, Scanning
  9. Sagadevan S, Venilla S, Marlinda AR, Johan MR, Wahab YA, Zakaria R, et al.
    J Nanosci Nanotechnol, 2020 Apr 01;20(4):2488-2494.
    PMID: 31492266 DOI: 10.1166/jnn.2020.17185
    Herein, we report the effect of synthesis temperature on the morphologies, optical and electronic properties of magnesium oxide (MgO) nanostructures. The MgO nanostructures were synthesized at different temperatures, i.e., 100 °C, 300 °C, and 600 °C by simple chemical reaction process and their morphology, particle size, optical, and electrical properties were examined by different techniques such as scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and UV-Vis. spectroscopy. The morphological investigations revealed that various morphologies of MgO nanostructures, i.e., nanoparticles, nanosheet networks, and nanoneedles were synthesized at 100 °C, 300 °C, and 600 °C. The XRD results confirmed that with increasing the synthesis temperature, the crystallinity of the synthesized nanostructures increases. Further, the dielectric properties and AC conductivity at various frequencies for MgO nanostructures were studied which revealed that the dielectric losses decrease with increase in frequency and temperature. In addition, the observed band gap decreases from 4.89 eV to 4.438 eV (100 °C to 600 °C) representing its increase in the conductivity.
    Matched MeSH terms: Microscopy, Electron, Scanning
  10. Muthukumaran M, Dhinagaran G, Narayanan V, Raju T, Venkatachalam K, Karthika PC, et al.
    J Nanosci Nanotechnol, 2019 Nov 01;19(11):7215-7220.
    PMID: 31039878 DOI: 10.1166/jnn.2019.16671
    Graphene oxide/Cuprous oxide (GO/Cu₂O) composite is a visible light photocatalyst for the degradation of dyes. A simple and efficient approach for preparing GO/Cu₂O composite adopted in this study involves reducing cuprous oxide precursors in the presence of graphene oxide using an aqueous solution of pulp derived from banana fruit. The GO/Cu₂O composite was characterized by Fourier transform infrared spectroscopy (FT-IR), Diffused reflectance Ultraviolet visible spectroscopy (DRS UV-Vis), Raman spectroscopy and Field Emission Scanning electron microscopy (FE-SEM). Cu₂O particles were distributed randomly on the graphene oxide sheets due to the template effect of GO. The results showed higher photocatalytic activity for the composite (band gap 2.13 eV), for the degradation of the organic dyes (Methylene blue and Rhodamine-B). The enhanced photocatalytic activity is due to effective charge transfer from GO to Cu₂O, and high specific surface area which improves the effective separation of the generated electron-hole pairs. Our present study is inspired by a facile, low cost, green production of (GO/Cu₂O) composite whose photocatalytic activity can be extended to degradation of all other water-born textile dyes.
    Matched MeSH terms: Microscopy, Electron, Scanning
  11. Rozi SKM, Shahabuddin S, Manan NSA, Mohamad S, Kamal SAA, Rahman SA
    J Nanosci Nanotechnol, 2018 May 01;18(5):3248-3256.
    PMID: 29442825 DOI: 10.1166/jnn.2018.14699
    The present work highlights the facile synthesis of hydrophobic palm fatty acid functionalized Fe3O4 nanoparticles (MNP-FA) for the efficient removal of oils from the surface of water. An intense hydrophobic layer was introduced on the surface of Fe3O4 nanoparticles functionalized by the palm fatty acid obtained from the hydrolysis of palm olein. Scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), Energy dispersive X-ray spectroscopy (EDX) and water contact angle analysis (WCA) measurements were used to characterize the newly fabricated palm fatty acid adorned magnetic Fe3O4 nanoparticles (MNP-FA). The obtained results confirmed the successful synthesis of palm fatty acid-functionalized magnetic nanoparticles. Oil removal tests performed with MNP-FA revealed that this newly prepared material could selectively adsorb lubricating oil up to 3.5 times of the particles' weight while completely repelling water. The main parameters affecting the adsorption of oil i.e., sorption time, mass of sorbent and pH of water were optimized.
    Matched MeSH terms: Microscopy, Electron, Scanning
  12. Norsyuhada W, Shukri WM, Bidin N, Islam S, Krishnan G
    J Nanosci Nanotechnol, 2018 Jul 01;18(7):4841-4851.
    PMID: 29442664 DOI: 10.1166/jnn.2018.15358
    Au-Ag alloy nanoparticles are physically synthesized using rapid, simple and efficient Q-switched Nd:YAG pulsed laser ablation in liquid technique (PLAL). Au and Ag colloidal solutions are separately prepared by 1064 nm laser ablation of metallic target (gold and silver) which is immersed in deionized water. Au-Ag alloy nanoparticles are prepared by irradiating the mixture of Au and Ag colloidal solutions with 532 nm of second harmonic wavelength of Nd:YAG laser at three different ratio, 3:1, 1:1 and 1:3 within different exposure times. The three of plasmon absorption bands of Au-Ag nanoparticles are shifted linearly to the lower wavelength [499.67 nm (3:1), 481.25 nm (1:1), 467.91 nm (1:3)], as compared to plasmon absorption spectra of pure Au (520 nm) and Ag (400 nm). Moreover, the change in colors are also observed from red (Au) and yellow (Ag) to orange, brown and green color due to the Au-Ag alloy formations, respectively. Transmission electron microscopy shows the Ag shell around the inner core of Au spherical metal with broad size distribution due to the three different volume ratio, respectively (1.7 nm, 0.7 nm, 1.4 nm). Energy-dispersive X-ray spectroscopy analysis confirms the presence of Au and Ag elements in Au-Ag alloy nanoparticles without any contaminations. Attenuated total reflectance fourier transform infrared spectroscopy analysis also confirms the homogenous Au-Ag alloys chemical bonding.
    Matched MeSH terms: Microscopy, Electron, Transmission
  13. Yahya N, Akhtar MN, Nasir N, Shafie A, Jabeli MS, Koziol K
    J Nanosci Nanotechnol, 2012 Oct;12(10):8100-9.
    PMID: 23421185
    In seabed logging the magnitude of electromagnetic (EM) waves for the detection of a hydrocarbon reservoir in the marine environment is very important. Having a strong EM source for exploration target 4000 m below the sea floor is a very challenging task. A new carbon nanotubes (CNT) fibres/aluminium based EM transmitter is developed and NiZn ferrite as magnetic feeders was used in a scaled tank to evaluate the presence of oil. Resistive scaled tank experiments with a scale factor of 2000 were carried out. X-ray Diffraction (XRD), Raman Spectroscopy and Field Emission Scanning Electron Microscope (FESEM) were done to characterize the synthesized magnetic feeders. Single phase Ni0.76Mg0.04Zn0.2Fe2O4, obtained by the sol-gel method and sintered at 700 degrees C in air, has a [311] major peak. FESEM results show nanoparticles with average diameters of 17-45 nm. Samples which have a high Q-factor (approximately 50) was used as magnetic feeders for the EM transmitter. The magnitude of the EM waves of this new EM transmitter increases up to 400%. A curve fitting method using MATLAB software was done to evaluate the performance of the new EM transmitter. The correlation value with CNT fibres/aluminium-NiZnFe2O4 base transmitter shows a 152.5% increase of the magnetic field strength in the presence of oil. Modelling of the scale tank which replicates the marine environment was done using the Finite Element Method (FEM). In conclusion, FEM was able to delineate the presence of oil with greater magnitude of E-field (16.89%) and the B field (4.20%) due to the new EM transmitter.
    Matched MeSH terms: Microscopy, Electron, Scanning
  14. Saharudin KA, Sreekantan S, Abd Aziz SN, Hazan R, Lai CW, Mydin RB, et al.
    J Nanosci Nanotechnol, 2013 Mar;13(3):1696-705.
    PMID: 23755576
    The present study deals with surface modification of Ti6Al4V alloy via anodization technique. The morphology, structure, adhesion and bioactivity of Ti6Al4V alloy after anodization process were investigated in detail. The influence of fluoride content and direct circuit (DC) applied voltage during anodization of Ti6Al4V alloy in a bath with electrolytes composed of ethylene glycol (EG) and ammonium fluoride (NH4F) were considered. It was found that the average pore sizes and length of nanoporous or nanotubes were increasing with the fluoride content and applied voltage. A minimum of 3 wt% of NH4F is required to grow a self-organized nanotube arrays. As the fluoride content was increased to 5 wt%, TiO2 nanotubes with average diameter of 110 nm and 3.4 microm lengths were successfully synthesized. It is noteworthy to point out that the rate of the nanotube formation was increasing up to 9 microm thick bioactive TiO2 nanotubes layer as anodization time was increased to 3 h. Based on the results obtained, the PA6 cells cultured on anodic Ti6Al4V alloy showed highest level of cell viability and greater cell adhesion compared to the flat Ti6Al4V foil substrate. In fact, highly ordered nanotubes structure on Ti6Al4V alloy can provide beneficial effects for PA6 cells in attachment and proliferation.
    Matched MeSH terms: Microscopy, Electron, Scanning
  15. Ahmad AL, Sumathi S, Hameed BH
    Water Res, 2005 Jul;39(12):2483-94.
    PMID: 15985277
    The adsorption of residue oil from palm oil mill effluent (POME) using chitosan powder and flake has been investigated. POME contains about 2g/l of residue oil, which has to be treated efficiently before it can be discharged. Experiments were carried out as a function of different initial concentrations of residue oil, weight dosage, contact time and pH of chitosan in powder and flake form to obtain the optimum conditions for the adsorption of residue oil from POME. The powder form of chitosan exhibited a greater rate compared to the flake type. The results obtained showed that chitosan powder, at a dosage of 0.5g/l, 15min of contact time and a pH value of 5.0, presented the most suitable conditions for the adsorption of residue oil from POME. The adsorption process performed almost 99% of residue oil removal from POME. Equilibrium studies have been carried out to determine the capacity of chitosan for the adsorption of residue oil from POME using the optimum conditions from the flocculation at different initial concentrations of residue oil. Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms and isotherm constants. Equilibrium data fitted very well with the Freundlich model. The pseudo first- and second-order kinetic models and intraparticle diffusion model were used to describe the kinetic data and the rate constants were evaluated. The experimental data fitted well with the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step, i.e. chemisorption between residue oil and chitosan. The significant uptake of residue oil on chitosan was further proved by BET surface area analysis and SEM micrographs.
    Matched MeSH terms: Microscopy, Electron
  16. Erni Noor, Al-Bayaty, Fouad Hussain, Muhammad Qadri Bin Mohd Shukri, Mohamad Syahir Bin Zulkiflee
    Compendium of Oral Science, 2019;6(1):15-25.
    MyJurnal
    Objective: To evaluate the root debridement skill in periodontology pre-clinical module among dental students and to estimate the effectiveness of conducting periodontology pre-clinical module before entering clinical module. Materials and Method: : A total of 47 pre-clinical dental students (Year 2) were included in this study. Single rooted extracted teeth were collected, mounted on acrylic resin and set into the level of 1/3 of the root length. Each of them were instructed to prepare a mounted teeth and to perform root debridement procedure on the labial surface of the tooth only within 10 minutes using Gracey curette #5/6. The similar samples were distributed back to the same students (which were already in clinical year (year 4) to repeat the same procedure on the lingual surface of the same tooth. Root surface roughness was evaluated by using scanning electron microscope (SEM) and profilometer for both labial and lingual surfaces. Statistical analysis was done using Mann-Whitney U test and T-test. Significance level of p ≤ 0.05 was assumed for all analysis. Results: SEM photomicrographs of root surfaces with magnifications of 100x and 800x revealed that there were incomplete removal of the dental calculus in both surfaces and significant roughness root surfaces noted. Conclusion: : No significant differences noted between the students’ root debridement skill in the pre-clinical and also clinical year. Objectives of the current module were fulfilled but in order to meet the highest standard, current module need to be improved in the future.
    Matched MeSH terms: Microscopy, Electron, Scanning
  17. Mariana A, Santhana Raj AS, Tan SN, Ho TM
    Trop Biomed, 2007 Dec;24(2):29-37.
    PMID: 18209705
    Many finer taxonomic characters of Blomia tropicalis are not distinctly visible under conventional light microscopy. Scanning electron micrographs of this mite are therefore presented in this paper for better appreciation of the inconspicuous features of the morphology of the species. The differences in morphology of male and female B. tropicalis are also briefly discussed.
    Matched MeSH terms: Microscopy, Electron, Scanning
  18. Santhana Raj L, Teh Hamidah Z, Nor Asiha CP, Paramasvaran S
    Trop Biomed, 2006 Jun;23(1):69-74.
    PMID: 17041554 MyJurnal
    Transmission electron microscopy (TEM) can provide high resolution imaging of biological specimens. The study is to establish the effects of a modified glutaraldehyde (GA) compare to the standard GA fixation on Acanthamoeba castellanii from TEM perspectives and thus provide precise and accurate information on the ultrastructure studies of the parasite. By increasing the contrast, the ultrastructures of the parasite were more evident. The TEM images were obtained from parasites fixed with the modified GA and the standard GA and then the area of the nucleus and the gray values of the image of the nucleus of the parasites were measured. The mean areas of the nucleus were found to be significantly reduced in the standard GA fixed parasites (12210.4 nm2) compared to the modified GA fixed parasites (8676.3 nm2) (p < 0.05). The mean gray values of the image were significantly reduced from 2024 in the standard GA fixed parasites (2024) to the modified GA fixed parasites (1636) (p < 0.05). The study shows that the modified GA produced significantly better contrast on TEM images of the A. castellanii compared to the standard GA. This was because the modified GA generated more free water molecules during fixation and the uptake of modified GA by the nucleus of the parasite organizing all protein constituents in the cell into a more closely packed configuration than that of the standard GA. With such properties, the modified GA is a better fixative providing better images for ultrastructures of the parasite.
    Matched MeSH terms: Microscopy, Electron, Transmission
  19. Fish-Low CY, Abu Bakar S, Othman F, Chee HY
    Trop Biomed, 2018 Dec 01;35(4):1154-1159.
    PMID: 33601863
    Dengue virus (DENV) is maintained and circulated in both sylvatic/enzootic and endemic/human cycles and spill over infection of sylvatic DENV into human populations has been reported. Extensive deforestation and increase human activities in forest may increase the risk of human exposure to sylvatic dengue infection and this may become a threat to human. Present study investigated the changes in cell morphology and viral morphogenesis upon infection with sylvatic and endemic ecotypes in human monocytic U-937 cells using transmission electron microscopy. Autophagy, a process that is either pro-viral or anti-viral, was observed in U-937 cells of both infections, however only the replication of endemic DENV was evidenced. An insight into the infection responses of sylvatic progenitors of DENV in susceptible host cells may provide better understanding on dengue emergence in human populations.
    Matched MeSH terms: Microscopy, Electron, Transmission
  20. Taai K, Harbach RE, Somboon P, Sriwichai P, Aupalee K, Srisuka W, et al.
    Trop Biomed, 2019 Dec 01;36(4):926-937.
    PMID: 33597464
    Some species of the Anopheles dirus species complex are considered to be highly competent malaria vectors in Southeast Asia. Anopheles dirus is the primary vector of Plasmodium falciparum and P. vivax while An. cracens is the main vector of P. knowlesi. However, these two species are difficult to distinguish and identify based on morphological characters. Hence, the aim of this study was to investigate the potential use of antennal sensilla to distinguish them. Large sensilla coeloconica borne on the antennae of adult females were counted under a compound light microscope and the different types of antennal sensilla were examined in a scanning electron microscope. The antennae of both species bear five types of sensilla: ampullacea, basiconica, chaetica, coeloconica and trichodea. Observations revealed that the mean numbers of large sensilla coeloconica on antennal flagellomeres 2, 3, 7, 10 and 12 on both antennae of both species were significantly different. This study is the first to describe the types of antennal sensilla and to discover the usefulness of the large coeloconic sensilla for distinguishing the two species. The discovery provides a simple, reliable and inexpensive method for distinguishing them.
    Matched MeSH terms: Microscopy, Electron, Scanning
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links