Patients and Methods: Patients undergoing major open abdominal surgery were monitored continuously with FloTrac® to measure SVV and CI along with standard monitoring. Both SVV and CI were noted at baseline and every 10 min thereafter till the end of surgery and were observed for concurrence between the measurements.
Results: 1800 pairs of measurement of SVV and CI were obtained from 60 patients. Mean SVV and CI (of all patients) measured at different time points of measurement showed that as SVV increased with time, the CI dropped correspondingly. When individual readings of CI and SVV were plotted against each other, the scatter was found to be wide, reiterating the lack of agreement between the two parameters (R2 = 0.035). SVV >13% suggesting hypovolemia was found at 207 time points. Of these, 175 had a CI >2.5 L/min/m2 and only 32 patients had a CI <2.5 L/min/m2.
Conclusion: SVV, a dynamic index of fluid responsiveness can be used to monitor patients expected to have large fluid shifts during major abdominal surgery. It is very specific and has a high negative predictive value. When SVV increases, CI is usually maintained. Since many factors affect SVV and CI, any increase in SVV >13%, must be correlated with other parameters before administration of the fluid challenge.
METHODS: Non-inferiority randomized, clinical trial involving patients presenting with acute respiratory failure conducted in the ED of a local hospital. Participants were randomly allocated to receive either hCPAP or fCPAP as per the trial protocol. The primary endpoint was respiratory rate reduction. Secondary endpoints included discomfort, improvement in Dyspnea and Likert scales, heart rate reduction, arterial blood oxygenation, partial pressure of carbon dioxide (PaCO2), dryness of mucosa and intubation rate.
RESULTS: 224 patients were included and randomized (113 patients to hCPAP, 111 to fCPAP). Both techniques reduced respiratory rate (hCPAP: from 33.56 ± 3.07 to 25.43 ± 3.11 bpm and fCPAP: from 33.46 ± 3.35 to 27.01 ± 3.19 bpm), heart rate (hCPAP: from 114.76 ± 15.5 to 96.17 ± 16.50 bpm and fCPAP: from 115.07 ± 14.13 to 101.19 ± 16.92 bpm), and improved dyspnea measured by both the Visual Analogue Scale (hCPAP: from 16.36 ± 12.13 to 83.72 ± 12.91 and fCPAP: from 16.01 ± 11.76 to 76.62 ± 13.91) and the Likert scale. Both CPAP techniques improved arterial oxygenation (PaO2 from 67.72 ± 8.06 mmHg to 166.38 ± 30.17 mmHg in hCPAP and 68.99 ± 7.68 mmHg to 184.49 ± 36.38 mmHg in fCPAP) and the PaO2:FiO2 (Partial pressure of arterial oxygen: Fraction of inspired oxygen) ratio from 113.6 ± 13.4 to 273.4 ± 49.5 in hCPAP and 115.0 ± 12.9 to 307.7 ± 60.9 in fCPAP. The intubation rate was lower with hCPAP (4.4% for hCPAP versus 18% for fCPAP, absolute difference -13.6%, p = 0.003). Discomfort and dryness of mucosa were also lower with hCPAP.
CONCLUSION: In patients presenting to the ED with acute cardiogenic pulmonary edema or decompensated COPD, hCPAP was non-inferior to fCPAP and resulted in greater comfort levels and lower intubation rate.
PATIENTS AND METHODS: A retrospective review study involving 20 eyes that underwent primary augmented trabeculectomy with mitomycin (MMC) and 10 eyes GDD implantation in 3 tertiary centres in Malaysia between 1 January 2013 and 31 December 2019. They were followed up for at least 12 months postsurgical intervention. Intraocular pressure (IOP), number of topical IOP lowering medication and complications were evaluated at 1, 3, 6 and 12 months post-intervention. Based on the IOP, the success was divided into complete and partial success, and failure. IOP and postsurgical complications were compared using the Repetitive Measure Analysis of Variance (RM ANOVA) and the Pearson chi-square test.
RESULTS: Both methods were effective in lowering the IOP. Eyes with primary augmented trabeculectomy have significant lower IOP compared to GDD implantation (p = 0.037). There was a higher incidence of postoperative hypotony (30%) in the trabeculectomy group. There was also a significant reduction of mean number of topical pressure-lowering drugs required postoperatively (p = 0.015). Complete success was achieved in 100% of eyes with trabeculectomy and 67% in GDD implantation (p = 0.047).
CONCLUSIONS: Primary augmented trabeculectomy and GDD implantation are good surgical options for the treatment of JOAG. Both methods provide IOP lowering at 1 year. However, trabeculectomy provides better pressure lowering, compared to GDD implantation in patients with JOAG.
METHODS: A total of 127 adults aged 18-40 years who completed clinical blood pressure assessment and echocardiography phenotyping at rest and during cardiopulmonary exercise testing, were included. Measurements were compared between participants with suboptimal blood pressure ≥120/80mm Hg (n = 68) and optimal blood pressure <120/80mm Hg (n = 59). Left ventricular systolic function during exercise was obtained from an apical four chamber view, while resting left atrial function was assessed from apical four and two chamber views.
RESULTS: Participants with suboptimal blood pressure had higher left ventricular mass (p = 0.031) and reduced mitral E velocity (p = 0.02) at rest but no other cardiac differences. During exercise, their rise in left ventricular ejection fraction was reduced (p = 0.001) and they had higher left ventricular end diastolic and systolic volumes (p = 0.001 and p = 0.001, respectively). Resting cardiac size predicted left ventricular volumes during exercise but only left atrial booster pump function predicted the left ventricular ejection fraction response ( β = .29, p = 0.011). This association persisted after adjustment for age, sex, body mass index, and mean arterial pressure.
CONCLUSION: Young adults with suboptimal blood pressure have a reduced left ventricular systolic response to exercise, which can be predicted by their left atrial booster pump function at rest. Echocardiographic measures of left atrial function may provide an early marker of functionally relevant, subclinical, cardiac remodelling in young adults with hypertension.
METHODS: This cross-sectional study included 390 participants from a primary care clinic in Selangor, Malaysia, between February and June 2022. The inclusion criteria were high-CV risk individuals, that is, Framingham risk score >20%, diabetes without target organ damage, stage 3 kidney disease, and very high levels of low-density lipoprotein cholesterol (LDL-C) >4.9 mmol/L or blood pressure (BP) >180/110 mmHg. Individuals with existing CVD were excluded. The treatment targets were BP <140/90 mmHg (≤135/75 for diabetics), LDL-C <2.6 mmol/L, and HbA1c ≤6.5%. Multiple logistic regressions determined the association between sociodemographic, clinical characteristics, health literacy, and medication adherence with the achievements of each target.
RESULTS: About 7.2% achieved all treatment targets. Of these, 35.1% reached systolic and diastolic (46.7%) BP targets. About 60.2% and 28.2% achieved optimal LDL-C and HbA1c, respectively. Working participants had lower odds of having optimal systolic (aOR = 0.34, 95% CI: 0.13-0.90) and diastolic (aOR = 0.41, 95% CI: 0.17-0.96) BP. Those who adhered to treatments were more likely to achieve LDL-C and HbA1c targets; (aOR = 1.72, 95% CI: 1.10-2.69) and (aOR = 2.46, 95% CI: 1.25-4.83), respectively.
CONCLUSIONS: The control of risk factors among high CV risk patients in this study was suboptimal. Urgent measures such as improving medication adherence are warranted.
METHODS: We used data spanning 2010-2018 from children aged 2-12 years within the Chicago Area Patient-Centered Outcomes Research Network-an electronic health record network. Four clinical systems comprised the derivation sample and a fifth the validation sample. Body mass index, blood pressure, cholesterol, and blood glucose were categorized as ideal, intermediate, and poor using clinical measurements, laboratory readings, and International Classification of Diseases diagnosis codes and summed for an overall CVH score. Group-based trajectory modeling was used to create CVH score trajectories which were assessed for classification accuracy in the validation sample.
RESULTS: Using data from 122,363 children (47% female, 47% non-Hispanic White) three trajectories were identified: 59.5% maintained high levels of clinical CVH, 23.4% had high levels of CVH that declined, and 17.1% had intermediate levels of CVH that further declined with age. A similar classification emerged when the trajectories were fitted in the validation sample.
CONCLUSIONS: Stratification of CVH was present by age 2, implicating the need for early life and preconception prevention strategies.