In the present work, the biogenic amines tryptamine (TRP), putrescine (PUT), histamine (HIS), tyramine (TYR) and spermidine (SPD) were determined in 32 various types of tofu that were obtained from different states in Malaysia. Three main types of tofu; soft tofu, firm tofu and processed tofu, were analysed in the present work. The biogenic amine contents in the respective types of tofu were analysed by a reversed-phase HPLC with a DAD detector after the aqueous extraction and derivatisation with dansyl chloride. The LOD values ranged from 0.019 mg/L for PUT to 0.028 mg/L for TYR. While, the LOQ values ranged from 0.063 mg/L (PUT) to 0.096 mg/L (TYR). The recovery values for all the five amines ranged from 80.3% to 120.5% with RSD ≤ 3.1%. The total levels of biogenic amines found varied, ranging from 1.5 mg/kg to 687.9 mg/kg, with mean values (p < 0.05) in descending order of 44.6, 12.6, 9.1, 4.8 and 4.7 mg/kg for PUT, TYR, SPD, HIS and TRP, respectively. PUT and TRP were the most prevailing biogenic amines and they were found respectively in 90.62% of the tofu analysed. Significant positive correlations (r = 0.266 to 0.874, p < 0.05) were found between some individual biogenic amines and protein content in all the three types of tofu. However, negative correlations (r = -0.246 to -0.832, p < 0.05) were observed between biogenic amines and moisture content, and between biogenic amines and water activity in all the three types of tofu. Significant and strong correlations (r = 0.525 to 0.999, p < 0.05) were found between most of the individual biogenic amines and the total biogenic amines. Those tofu exceeding the legal limits may affect the health of sensitive individuals.
Matched MeSH terms: Chromatography, High Pressure Liquid
In this study, different parts (aerial, stem and root) of Salvadora oleoides Decne were investigated in order to explore their phytochemical composition and biological potential. The bioactive contents were evaluated by conventional spectrophotometric methods. Additionally, the secondary metabolite compounds were identified by UHPLC-MS analysis. Biological potential was evaluated by determining antioxidant (DPPH, FRAP, and Phosphomolybdenum) and enzyme inhibitory (butrylcholinesterase and lipoxygenase) effects. Higher total bioactive contents were found in methanolic extracts which tend to correlate with higher radical scavenging and reducing potential of these extracts. LC/MS spectrum revealed the presence of 16 different secondary metabolites belonging to terpene, glucoside and sesquiterpenoid dervivatives. Glucocleomin and emotin A were the main compounds present in all three parts. The strongest butrylcholinesterase and lipoxygenase inhibitory activity was observed for root and stem DCM extracts. Demonstrated biological potential of S. oleoides plant can trace a new road map for developing newly designed bioactive pharmaceuticals.
Matched MeSH terms: Chromatography, High Pressure Liquid
Hydrate formation is a common challenge in the oil and gas industry when natural gas is transported under cold conditions in the presence of water. Coatings are one of the solutions that have shown to be a promising approach to address this challenge. However, this strategy suffers from the intrinsic existence of a solid-liquid interface causing a high rate of hydrate nucleation and high hydrate adhesion strength. This proof-of-concept study highlights the performance of a magnetic slippery surface to prevent hydrate adhesion at atmospheric pressure using tetrahydrofuran hydrates. The coating consisted of a hydrocarbon-based magnetic fluid, which was applied to a metal surface to create an interface that lowered the hydrate adhesion strength on the surface. The performance of these new surfaces under static and dynamic (under fluid flow) conditions shows that the magnetic coating gel can be a potential inhibitor for hydrate adhesion as it reduced the torque value after the formation of hydrates.
Present data article based on the investigation which enumerates the influence of CNG (compressed natural gas) and HCNG (hydrogen enriched compressed natural gas) on performance and emission parameters of direct injection diesel engine at 200, 220, and 240 bar injection pressures. The CNG and HCNG gaseous alternative fuels were injected in amount (by mass) of 10%, 20% and 30% as secondary fuels to enrich the pilot fuel (pure diesel) during the operation. The performance and emission data of dual fuel (CNG + pure diesel, HCNG + pure diesel) operation was analysed to compare with the pure diesel data. The data for present investigational work were assessed at 25%, 50%, 75% and 100% diverse engine loads for all trials under diverse injection pressures. Eddy current dynamometer was employed to raise the engine load from quartile to maximum. AVL DiGAS 444 N multi gas analyser was used to measure the values of carbon monoxide (CO), unburned hydrocarbon (UHC), and oxides of nitrogen (NOx) detrimental emissions in engine exhaust.
There are many methods to separate or purify the rebaudioside A compound from Stevia rebaudiana extract. However, the ion-exchange chromatography using macroporous resin is still the most popular among those methods. The separation of rebaudioside A from stevia crude extract by macroporous resin AB-8 was optimised in this adsorption separation study. This approach was applied to evaluate the influence of four factors such as the adsorption temperature, desorption time, elution solution ratio, and adsorption volume on rebaudioside A yield of the purified stevia extract. The results showed that the low polarity resin AB-8 is able to separate rebaudioside A from stevia extract with 0.601 in yield compared to the high polarity resin HPD 600 with 0.204 in yield used in Anvari and Khayati study. The best conditions for rebaudioside A separation by macroporous resin AB-8 were at 35°C of adsorption temperature, 30 min of desorption time, elution solution ratio 2:1, and 50 mL of adsorption volume.
Matched MeSH terms: Chromatography, High Pressure Liquid
Watermelons (Citrullus lanatus) are known to have sufficient amino acid content. In this study, watermelons grown and consumed in Malaysia were investigated for their amino acid content, L-citrulline and L-arginine, by the isocratic RP-HPLC method. Flesh and rind watermelons were juiced, and freeze-dried samples were used for separation and quantification of L-citrulline and L-arginine. Three different mobile phases, 0.7% H3P04, 0.1% H3P04, and 0.7% H3P04 : ACN (90 : 10), were tested on two different columns using Zorbax Eclipse XDB-C18 and Gemini C18 with a flow rate of 0.5 mL/min and a detection wavelength at 195 nm. Efficient separation with reproducible resolution of L-citrulline and L-arginine was achieved using 0.1% H3P04 on the Gemini C18 column. The method was validated and good linearity of L-citrulline and L-arginine was obtained with R2 = 0.9956, y = 0.1664x + 2.4142 and R2 = 0.9912, y = 0.4100x + 3.4850, respectively. L-citrulline content showed the highest concentration in red watermelon of flesh and rind juice extract (43.81 mg/g and 45.02 mg/g), whereas L-arginine concentration was lower than L-citrulline, ranging from 3.39 to 11.14 mg/g. The isocratic RP-HPLC method with 0.1% H3P04 on the Gemini C18 column proved to be efficient for separation and quantification of L-citrulline and L-arginine in watermelons.
Matched MeSH terms: Chromatography, High Pressure Liquid
Hemodialysis is a treatment for patients with kidney failure. One of the main problems in patients on hemodialysis is increasing of interdialytic weight gain (IDWG) due to decreased kidney excretion function. Increasing of interdialytic weight gain cause dangerous conditions and reduce the function of whole-body systems, especially cardiovascular and respiratory systems. These conditions require appropriate intervention. Various references reported intradialysis exercise can be an alternative intervention to reduce interdialytic weight gain. The purpose of this study was to determine the effectiveness of intradialytic exercise intervention to reduce interdialytic weight gain in patients on hemodialysis. A quantitative descriptive analytic study was conducted. Sixty-four patients on hemodialysis were randomly selected in hemodialysis unit. Patients performed intradialytic exercise twice a week for 8 weeks. Statistical analysis with general linear model repeated measure showed there was decrease in the interdialytic weight gain mean in patients on hemodialysis after 3-8 weeks intervention intradialytic exercise with p value of 0.000; <0.05. The interdialytic weight gain mean decrease between 0.281 and 1.438kg. Performed minimal four weeks intradialytic exercise was effective to reduced interdialytic weight gain in patients on hemodialysis. Based on the results of the study, it is suggested for nurses to educate patient on hemodialysis about intradialytic exercise. Intradialytic exercise can be an alternative independent nursing intervention to reduce interdialytic weight gain in patients on hemodialysis.
H2S gas when exposed to metal can be responsible for both general and localized corrosion, which depend on several parameters such as H2S concentration and the corrosion product layer formed. Therefore, the formation of passive film on 316L steel when exposed to H2S environment was investigated using several analysis methods such as FESEM and STEM/EDS analyses, which identified a sulfur species underneath the porous structure of the passive film. X-ray photoelectron spectroscopy analysis demonstrated that the first layer of CrO3 and Cr2O3 was dissolved, accelerated by the presence of H2S-Cl-. An FeS2 layer was formed by incorporation of Fe and sulfide; then, passivation by Mo took place by forming a MoO2 layer. NiO, Ni(OH)2, and NiS barriers are formed as final protection for 316L steel. Therefore, Ni and Mo play an important role as a dual barrier to maintain the stability of 316L steel in high pH2S environments. For safety concern, this paper is aimed to point out a few challenges dealing with high partial pressure of H2S and limitation of 316L steel under highly sour condition for the oil and gas production system.
Mycotoxin toxicity occurs at very low concentrations, therefore sensitive and reliable methods for their detection are required. Consequently, sampling and analysis of mycotoxins is of critical importance because failure to achieve a suitable verified analysis can lead to unacceptable consignments being accepted or satisfactory shipments unnecessarily rejected. The general mycotoxin analyses carried out in laboratories are still based on physicochemical methods, which are continually improved. Further research in mycotoxin analysis has been established in such techniques as screening methods with TLC, GC, HPLC, and LC-MS. In some areas of mycotoxin method development, immunoaffinity columns and multifunctional columns are good choices as cleanup methods. They are appropriate to displace conventional liquid-liquid partitioning or column chromatography cleanup. On the other hand, the need for rapid yes/no decisions for exported or imported products has led to a number of new screening methods, mainly, rapid and easy-to-use test kits based on immuno-analytical principles. In view of the fact that analytical methods for detecting mycotoxins have become more prevalent, sensitive, and specific, surveillance of foods for mycotoxin contamination has become more commonplace. Reliability of methods and well-defined performance characteristics are essential for method validation. This article covers some of the latest activities and progress in qualitative and quantitative mycotoxin analysis.
Matched MeSH terms: Chromatography, High Pressure Liquid
Advances in sequencing technology have increased our understanding of the composition of the gut microbiota and their contribution to health and disease states, including in cardiovascular diseases such as hypertension. The gut microbiota is heavily influenced by diet and produce metabolites such as short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO) from various food sources. SCFAs, such as acetate, propionate, and butyrate, have been shown to have blood pressure, cardiac hypertrophy, and fibrosis lowering properties, while TMAO has been associated with increased risk of major cardiovascular adverse events and mortality. Some of these metabolites have known ligands (for example, SCFA receptors such as GPR41, GPR43, GPR109a, and Olf78 in mice/OR51E2 in humans) which could potentially be manipulated as therapeutic targets for hypertension. In this review, we discuss several types of diet-related gut microbial metabolites and their sensing mechanisms that are relevant for hypertension, and the future directions for the field.
Hemoglobin S (HbS, α2β26GluVal) merupakan variasi hemoglobin yang terbentuk hasil daripada mutasi GAG GTG pada kodon 6 gen β-globin. Hemoglobinopati haemoglobin S (HbS) jarang ditemui di kalangan penduduk Malaysia tetapi selalunya dijumpai di kalangan pendatang asing dari Afrika. Walau bagaimanapun beberapa kes didapati dalam kaum India dan Melayu. Kajian ini meninjau keputusan makmal pesakit HbS dan penggunaan “multiplex ligation-dependent probe amplification” (MLPA) dan “flow-through hybridization” (FTH) dalam mengesan mutasi HbS. HbS dikenalpasti melalui kromatografi cecair prestasi tinggi (HPLC) dan/atau elektroforesis kapilari serta elektroforesis hemoglobin. Analisis molekul dijalankan menggunakan kaedah MLPA, FTH dan penjujukan Sanger. Dua warga Afrika, tiga Melayu dan dua India berusia antara 2-31 tahun telah dikenalpasti. Lima pesakit adalah HbS homozigot, seorang kompaun heterozigot HbS/β-talasemia dan seorang lagi pembawa HbS. Tahap hemoglobin (Hb) kes HbS homozigot adalah antara 7.4-10.2 g/dL dengan aras HbS dan HbF diantara 58.3-94.7% dan 1.5-35.5%. Hb untuk kes kompaun heterozigot HbS/β-talasemia adalah 5.8 g/dL dan normal pada pembawa HbS. Aras HbS, HbF dan HbA2 untuk HbS/β-talasemia dan pembawa HbS adalah 67%, 27.2% dan 4.2%, dan 38.6%, 0.1% and 2.8% setiap satu. Kedua-dua kaedah MLPA dan FTH berjaya mengesan mutasi HbS dalam semua kes, manakala cuma FTH dapat menentukan zygositi mutasi HbS dan β-talasemia dalam satu ujian yang sama.
Matched MeSH terms: Chromatography, High Pressure Liquid
Introduction: In this study, Renal artery (RA) stenosis of Single Stenosed (SS) and Double Stenosed (DS) with the condition of Normal Blood Pressure (NBP) and High Blood Pressure (HBP) were investigated using the aid of Fluid Structure Interaction (FSI) approach. Methods: Numerical analysis of 3D model patient’s specific abdominal aorta with RA stenosis was conducted using FSI solver in software ANSYS 18. Results: The results of velocity profile, pres- sure drop, time average wall shear stress (TAWSS), Oscillatory shear index (OSI) and total deformation of SS and DS with the condition of NBP and HBP were compared in terms of blood flow and structural wall tissue behaviour. The results concluded SS-NBP produced the highest value of velocity profile, TAWSS and OSI parameter compared to the others. Meanwhile, SS-HBP indicates the highest value pressure drop. On the other hand, SS-HBP and DS-HBP have a higher distribution of deformation contour and also maximum VMS compared to SS-NBP and DS-HBP. Conclusion: With the aid of FSI approach, this studied has proven that the existence of SS at RA location has a higher impact on the velocity magnitude, higher pressure drop, higher TAWSS and OSI value compared to the DS case. This is due to a high concentration of pressure acting at the narrow blood vessel of SS compared to DS cases which most of the blood flow will pass to the lower part of abdominal aorta.
Glycerol electro-oxidation offers a green route to produce the high value added chemicals. Here in, we report the glycerol electro-oxidation over a series of multi walled carbon nano tubes supported monometallic (Pt/CNT and Pd/CNT) and bimetallic (Pt-Pd/CNT) catalysts in alkaline medium. The cyclic voltammetry, linear sweep voltammetry and chronoamperometry measurements were used to evaluate the activity and stability of the catalysts. The Pt-Pd/CNT electrocatalyst exhibited the highest activity in terms of higher current density (129.25 A/m²) and electrochemical surface area (382 m²/g). The glycerol electro-oxidation products formed at a potential of 0.013 V were analyzed systematically by high performance liquid chromatography. Overall, six compounds were found including mesoxalic acid, 1,3-dihydroxyacetone, glyceraldehyde, glyceric acid, tartronic acid and oxalic acid. A highest mesoxalic acid selectivity of 86.42% was obtained for Pt-Pd/CNT catalyst while a maximum tartronic acid selectivity of 50.17% and 46.02% was achieved for Pd/CNT and Pt/CNT respectively. It was found that the introduction of Pd into Pt/CNT lattice facilitated the formation of C3 products in terms of maximum selectivity achieved (86.42%) while the monometallic catalysts (Pd/CNT and Pt/CNT) showed a poor performance in comparison to their counterpart.
Matched MeSH terms: Chromatography, High Pressure Liquid
The spatial distribution of environmental conditions may influence the dynamics of vectorborne diseases like leptospirosis. This study aims to investigate the global and localised relationships between leptospirosis with selected environmental variables. The association between environmental variables and the spatial density of geocoded leptospirosis cases was determined using global Poisson regression (GPR) and geographically weighted Poisson regression (GWPR). A higher prevalence of leptospirosis was detected in areas with higher water vapour pressure (exp(â): 1.12; 95% CI: 1.02 - 1.25) and annual precipitation (exp(â): 1.15; 95% CI: 1.02 - 1.31), with lower precipitation in the driest month (exp(â): 0.85; 95% CI: 0.75 - 0.96) and the wettest quarter (exp(â): 0.88; 95% CI: 0.77 - 1.00). Water vapor pressure (WVP) varied the most in the hotspot regions with a standard deviation of 0.62 (LQ: 0.15; UQ; 0.99) while the least variation was observed in annual precipitation (ANNP) with a standard deviation of 0.14 (LQ: 0.11; UQ; 0.30). The reduction in AICc value from 519.73 to 443.49 indicates that the GWPR model is able to identify the spatially varying correlation between leptospirosis and selected environmental variables. The results of the localised relationships in this study could be used to formulate spatially targeted interventions. This would be particularly useful in localities with a strong environmental or socio-demographical determinants for the transmission of leptospirosis.
A method is described for the determination of pyronaridine in plasma using high-performance liquid chromatography with fluorescence detection. The method involves liquid-liquid extraction with phosphate buffer (pH 6.0, 0.05 M) and diethyl ether-hexane (70:30%, v/v) and chromatographic separation on a C18 column (Nucleosil, 250 x 4.6 mm I.D., 5 microns particle size) with acetonitrile-0.05 M phosphate buffer pH 6.0 (60:40%, v/v) as the mobile phase (1 ml/min) and detection by fluorescence (lambda ex = 267 nm, lambda em = 443 nm). The detector response is linear up to 1000 ng and the overall recoveries of pyronaridine and quinine were 90.0 and 60.3%, respectively. The assay procedure was adequately sensitive to measure 10 ng/ml pyronaridine in plasma samples with acceptable precision (< 15% C.V.). The method was found to be suitable for use in clinical pharmacological studies.
Matched MeSH terms: Chromatography, High Pressure Liquid
In this paper, densification of in-situ copper-niobium carbide composite using cold pressing technique was addressed. Mixtures of Cu-20vol%NbC powder were prepared by two methods.
In first method, a mixture of Cu-15.79wt%Nb-2.04wt%C powder was milled at 400 rpm for 35 hours in a planetary mill. In second method, Cu and commercial NbC powder was mixed at 100 rpm for 2 hours in a jar mill. Then, both powders were pressed at different pressure (i.e. 350 MPa, 450 MPa, 550 MPa and 650 MPa) and sintered at 900 o C for 1 hour. Sample of in-situ and ex-situ Cu-20vol%NbC composite were characterized for density, hardness, phase formation by x-ray diffraction analysis and microstructure by scanning electron microscope. Xray diffraction analysis showed that NbC phase was formed in the in-situ processed sample. Hardness of in-situ processed copper composite was higher than that of the ex-situ processed copper composite due to good interface between coper matrix and niobium carbide reinforcement particle as well as distribution of finer niobium carbide particles in copper matrix. Sintered density of in-situ composite is lower than density of ex-situ composite beacuse of work hardening of the Cu-Nb-C mixture powder during powder to ball collision. Density and hardness of the in-situ and ex-situ Cu-20vol%NbC composites increase with the increase in compaction pressure as porosity is eliminated at higher compaction pressure.
Vapour pressure deficit (VPD) analysis introduces an approach to develop a better basis for the control of the environment of lowland greenhouses in Malaysia. The study of vapour pressure deficit (VPD) is to show air moisture conditions for plant production while taking into account different temperature levels. The purpose of this project is to develop a real-time automatic temperature and relative humidity control system in the lowland tropical greenhouse using a PIC16f876A microcontroller. The controller will then be used to monitor the temperature, relative humidity and VPD in the planting of Chili Kulai (Titisan 15). The fertigation system was introduced to the greenhouse to fertilize and irrigate the plant as well as to provide moisture to the environment. A swamp cooler was used to bring down the temperature and increase moisture content in the greenhouse. Ventilators were installed to remove the heat in the greenhouse. The study was carried out in an experimental greenhouse located at the Institute of Advanced Technology, Universiti Putra Malaysia (UPM).
HbA1c is an established index of glycaemic control and correlates strongly with risk of chronic diabetic complications. However, the accuracy of HbA1c measurement can be affected by many factors, among which is the presence of haemoglobin (Hb) variants. The aim of the study was to determine the percentage of Hb variant detected during HbA1c monitoring in Hospital Kuala Lumpur. The study also analysed non-reportable HbA1c results in the presence of Hb variants. A cross-sectional study using retrospective data of HbA1c results over five months’ period was analysed on Biorad Variant II Turbo, a high performance liquid chromatography (HPLC) assay. The Hb variants were grouped either as HbS, HbC, others (Hb variant apart from HbS or C), and a combination of HbS or C with Others. A total of 11,904 patients were included. Only 2.3% (273) had Hb variants; HbS trait (10.3%), others (89%), and the combination of HbS trait with others (0.7%). No patient with HbC variant or its combination was found. Only 2.2% of those with Hb variant had non-reportable HbA1c. Although the percentage of Hb variants detected during HbA1c analysis and non-reportable HbA1c results were low, their presence should be noted.
Matched MeSH terms: Chromatography, High Pressure Liquid
Tailing sand is the residue mineral from tin extraction that contains between 94% and 99.5% silica, which can be used as moulding sand. It is found in abundance in the Kinta Valley in the state of Perak, Malaysia. Adequate water content and clay in moulding sand are important factors for better strength and
casting quality of products made from tailing sand. Samples of tailing sand were investigated according
to the American Foundrymen Society (AFS) standard. Cylindrical test pieces of Ø50 mm×50 mm in height from various sand-water ratios were compacted by applying three ramming blows of 6666g each using a Ridsdale-Dietert metric standard rammer. The specimens were tested for green compression strength using a Ridsdale-Dietert universal sand strength machine. Before the tests were conducted, moisture content of the tailing sand was measured using a moisture analyser. A mixture bonded with 8% clay possesses higher green compression strength compared to samples bonded with 4% clay. The results also show that in order to achieve maximum green compression strength, the optimum allowable moisture content for mixtures bonded with 8% clay is ranged between 3.75 and 6.5% and for mixtures bonded with 4% clay is 3-5.5%.