Displaying publications 21 - 40 of 134 in total

Abstract:
Sort:
  1. Tsvetkov V, Varizhuk A, Kozlovskaya L, Shtro A, Lebedeva O, Komissarov A, et al.
    Biochimie, 2021 Dec;191:27-32.
    PMID: 34389380 DOI: 10.1016/j.biochi.2021.08.003
    In the search for anti-SARS-CoV-2 drugs, much attention is given to safe and widely available native compounds. The green tea component epigallocatechin 3 gallate (EGCG) is particularly promising because it reportedly inhibits viral replication and viral entry in vitro. However, conclusive evidence for its predominant activity is needed. We tested EGCG effects on the native virus isolated from COVID-19 patients in two independent series of experiments using VERO cells and two different treatment schemes in each series. The results confirmed modest cytotoxicity of EGCG and its substantial antiviral activity. The preincubation scheme aimed at infection prevention has proven particularly beneficial. We complemented that finding with a detailed investigation of EGCG interactions with viral S-protein subunits, including S2, RBD, and the RBD mutant harboring the N501Y mutation. Molecular modeling experiments revealed N501Y-specific stacking interactions in the RBD-ACE2 complex and provided insight into EGCG interference with the complex formation. Together, these findings provide a molecular basis for the observed EGCG effects and reinforce its prospects in COVID-19 prevention therapy.
    Matched MeSH terms: Viral Proteins/metabolism; Viral Proteins/chemistry
  2. Al-Khannaq MN, Ng KT, Oong XY, Pang YK, Takebe Y, Chook JB, et al.
    Am J Trop Med Hyg, 2016 05 04;94(5):1058-64.
    PMID: 26928836 DOI: 10.4269/ajtmh.15-0810
    The human alphacoronaviruses HCoV-NL63 and HCoV-229E are commonly associated with upper respiratory tract infections (URTI). Information on their molecular epidemiology and evolutionary dynamics in the tropical region of southeast Asia however is limited. Here, we analyzed the phylogenetic, temporal distribution, population history, and clinical manifestations among patients infected with HCoV-NL63 and HCoV-229E. Nasopharyngeal swabs were collected from 2,060 consenting adults presented with acute URTI symptoms in Kuala Lumpur, Malaysia, between 2012 and 2013. The presence of HCoV-NL63 and HCoV-229E was detected using multiplex polymerase chain reaction (PCR). The spike glycoprotein, nucleocapsid, and 1a genes were sequenced for phylogenetic reconstruction and Bayesian coalescent inference. A total of 68/2,060 (3.3%) subjects were positive for human alphacoronavirus; HCoV-NL63 and HCoV-229E were detected in 45 (2.2%) and 23 (1.1%) patients, respectively. A peak in the number of HCoV-NL63 infections was recorded between June and October 2012. Phylogenetic inference revealed that 62.8% of HCoV-NL63 infections belonged to genotype B, 37.2% was genotype C, while all HCoV-229E sequences were clustered within group 4. Molecular dating analysis indicated that the origin of HCoV-NL63 was dated to 1921, before it diverged into genotype A (1975), genotype B (1996), and genotype C (2003). The root of the HCoV-229E tree was dated to 1955, before it diverged into groups 1-4 between the 1970s and 1990s. The study described the seasonality, molecular diversity, and evolutionary dynamics of human alphacoronavirus infections in a tropical region.
    Matched MeSH terms: Viral Proteins/genetics; Viral Proteins/metabolism
  3. Tham HW, Balasubramaniam VR, Chew MF, Ahmad H, Hassan SS
    J Infect Dev Ctries, 2015 Dec 30;9(12):1338-49.
    PMID: 26719940 DOI: 10.3855/jidc.6422
    INTRODUCTION: Dengue virus (DENV) is principally transmitted by the Aedes aegypti mosquito. To date, mosquito population control remains the key strategy for reducing the continuing spread of DENV. The focus on the development of new vector control strategies through an understanding of the mosquito-virus relationship is essential, especially targeting the midgut, which is the first mosquito organ exposed to DENV infection.
    METHODOLOGY: A cDNA library derived from female adult A. aegypti mosquito midgut cells was established using the switching mechanism at the 5' end of the RNA transcript (SMART), in combination with a highly potent recombination machinery of Saccharomyces cerevisiae. Gal4-based yeast two-hybrid (Y2H) assays were performed against DENV-2 proteins (E, prM, M, and NS1). Mammalian two-hybrid (M2H) and double immunofluorescence assays (IFA) were conducted to validate the authenticity of the three selected interactions.
    RESULTS: The cDNA library was of good quality based on its transformation efficiency, cell density, titer, and the percentage of insert size. A total of 36 midgut proteins interacting with DENV-2 proteins were identified, some involved in nucleic acid transcription, oxidoreductase activity, peptidase activity, and ion binding. Positive outcomes were obtained from the three selected interactions validated using M2H and double IFA assays.
    CONCLUSIONS: The identified proteins have different biological activities that may aid in the virus replication pathway. Therefore, the midgut cDNA library is a valuable tool for identifying DENV-2 interacting proteins. The positive outcomes of the three selected proteins validated supported the quality of the cDNA library and the robustness of the Y2H mechanisms.
    Matched MeSH terms: Viral Proteins/genetics; Viral Proteins/metabolism*
  4. Ali PS, John J, Selvaraj M, Kek TL, Salleh MZ
    Microbiol. Immunol., 2015 May;59(5):299-304.
    PMID: 25753649 DOI: 10.1111/1348-0421.12253
    Nodamura virus (NoV) B2, a suppressor of RNA interference, binds double stranded RNAs (dsRNAs) and small interfering RNAs (siRNAs) corresponding to Dicer substrates and products. Here, we report that the amino terminal domain of NoV B2 (NoV B2 79) specifically binds siRNAs but not dsRNAs. NoV B2 79 oligomerizes on binding to 27 nucleotide siRNA. Mutation of the residues phenylalanine49 and alanine60 to cysteine and methionine, respectively enhances the RNA binding affinity of NoV B2 79. Circular dichroism spectra demonstrated that the wild type and mutant NoV B2 79 have similar secondary structure conformations.
    Matched MeSH terms: Viral Proteins/genetics; Viral Proteins/metabolism*
  5. Chen Q, Lee CW, Sim EU, Narayanan K
    Hum Gene Ther Methods, 2014 Feb;25(1):40-7.
    PMID: 24134118 DOI: 10.1089/hgtb.2012.188
    Direct protein delivery into the cytosol of mammalian cells by invasive Escherichia coli (E. coli) bacterial vector will bypass the need to achieve nuclear entry and transcription of DNA, a major hurdle that is known to seriously limit gene transfer. The bacterial vector is induced to express the protein during its growth phase, before presentation for entry into mammalian cells and release of its content into the cellular environment. For this class of vector, crossing the plasma membrane becomes the primary step that determines the success of protein delivery. Yet, how the mechanics of protein expression within the vector affect its entry into the host is poorly understood. We found the vector's effectiveness to enter HeLa cells diminished together with its viability when phage N15 protelomerase (TelN) expression was induced continuously in the invasive E. coli despite producing an abundant amount of functional protein. By comparison, shorter induction, even as little as 3 hr, produced sufficient amounts of functional TelN and showed more effective invasion of HeLa cells, comparable to that of uninduced invasive E. coli. These results demonstrate that brief induction of protein expression during vector growth is essential for optimal entry into mammalian cells, an important step for achieving bacteria-mediated protein delivery.
    Matched MeSH terms: Viral Proteins/genetics*; Viral Proteins/metabolism
  6. Jaganathan S, Ooi PT, Phang LY, Allaudin ZN, Yip LS, Choo PY, et al.
    BMC Vet Res, 2015;11:219.
    PMID: 26293577 DOI: 10.1186/s12917-015-0537-z
    Newcastle disease virus remains a constant threat in commercial poultry farms despite intensive vaccination programs. Outbreaks attributed to ND can escalate and spread across farms and states contributing to major economic loss in poultry farms.
    Matched MeSH terms: Viral Proteins/genetics; Viral Proteins/metabolism
  7. Harcourt BH, Tamin A, Halpin K, Ksiazek TG, Rollin PE, Bellini WJ, et al.
    Virology, 2001 Aug 15;287(1):192-201.
    PMID: 11504554
    In 1998, Nipah virus (NV) emerged in peninsular Malaysia, causing fatal encephalitis in humans and a respiratory disease in swine. NV is most closely related to Hendra virus (HV), a paramyxovirus that was identified in Australia in 1994, and it has been proposed that HV and NV represent a new genus within the family Paramyxoviridae. This report describes the analysis of the sequences of the polymerase gene (L) and genomic termini of NV as well as a comparison of the full-length, genomic sequences of HV and NV. The L gene of NV is predicted to be 2244 amino acids in size and contains the six domains found within the L proteins of all nonsegmented, negative-stranded (NNS) RNA viruses. However, the GDNQ motif found in most NNS RNA viruses was replaced by GDNE in both NV and HV. The 3' and 5' termini of the NV genome are nearly identical to the genomic termini of HV and share sequence homology with the genomic termini of other members of the subfamily Paramyxovirinae. At 18,246 nucleotides, the genome of NV is 12 nucleotides longer than the genome of HV and they have the largest genomes within the family Paramyxoviridae. The comparison of the structures of the genomes of HV and NV is now complete and this information will help to establish the taxonomic position of these novel viruses within the family Paramyxoviridae.
    Matched MeSH terms: Viral Proteins/genetics*; Viral Proteins/chemistry
  8. Liew PS, Tan TH, Wong YC, Sim EUH, Lee CW, Narayanan K
    ACS Synth Biol, 2020 04 17;9(4):804-813.
    PMID: 32196315 DOI: 10.1021/acssynbio.9b00478
    TelN and tos are a unique DNA linearization unit isolated from bacteriophage N15. While being transferable, the TelN cleaving-rejoining activities remained stable to function on tos in both bacterial and mammalian environments. However, TelN contribution in linear plasmid replication in mammalian cells remains unknown. Herein, we investigated the association of TelN in linear tos-containing DNA (tos-DNA) replication in mammalian cells. Additionally, the mammalian origin of replication (ori) that is well-known to initiate the replication event of plasmid vectors was also studied. In doing so, we identified that both TelN and mammalian initiation sites were essential for the replication of linear tos-DNA, determined by using methylation sensitive DpnI/MboI digestion and polymerase chain reaction (PCR) amplification approaches. Furthermore, we engineered the linear tos-DNA to be able to retain in mammalian cells using S/MAR technology. The resulting S/MAR containing tos-DNA was robust for at least 15 days, with (1) continuous tos-DNA replication, (2) correct splicing of gene transcripts, and (3) stable exogenous gene expression that was statistically comparable to the endogenous gene expression level. Understanding the activities of TelN and tos in mammalian cells can potentially provide insights for adapting this simple DNA linearization unit in developing novel genetic engineering tools, especially to the eukaryotic telomere/telomerase study.
    Matched MeSH terms: Viral Proteins/genetics*; Viral Proteins/metabolism
  9. Sabarudin NS, Tan SW, Phang YF, Omar AR
    J Vet Sci, 2021 Jul;22(4):e42.
    PMID: 34313038 DOI: 10.4142/jvs.2021.22.e42
    BACKGROUND: Inclusion body hepatitis (IBH) is an economically important viral disease primarily affecting broiler and breeder chickens. All 12 serotypes of fowl adenovirus (FAdV) can cause IBH.

    OBJECTIVES: To characterize FAdV isolates based on phylogenetic analysis, and to study the pathogenicity of FAdV-8b in specific-pathogen-free (SPF) chickens following virus inoculation via oral and intramuscular (IM) routes.

    METHODS: Suspected organ samples were subjected to virus isolation and polymerase chain reaction (PCR) for FAdV detection. Hexon gene sequencing and phylogenetic analysis were performed on FAdV-positive samples for serotype identification. One FAdV-8b isolate, UPM/FAdV/420/2017, was selected for fiber gene characterization and pathogenicity study and was inoculated in SPF chickens via oral and IM routes.

    RESULTS: The hexon gene phylogenetic analysis revealed that all isolates belonged to FAdV-8b. The fiber gene-based phylogenetic analysis of isolate UPM/FAdV/420/2017 supported the grouping of that isolate into FAdV species E. Pathogenicity study revealed that, chickens infected with UPM/FAdV/420/2017 via the IM route had higher clinical score values, higher percent mortality, higher degree of the liver lesions, higher antibody response (p < 0.05), and higher virus shedding amounts (p < 0.05) than those infected via the oral route. The highest virus copy numbers were detected in liver and gizzard.

    CONCLUSIONS: FAdV-8b is the dominant FAdV serotype in Malaysia, and pathogenicity study of the FAdV-8b isolate UPM/FAdV/420/2017 indicated its ability to induce IBH in young SPF chickens when infected via oral or IM routes.

    Matched MeSH terms: Viral Proteins/metabolism; Viral Proteins/chemistry
  10. Tan CW, Sam IC, Lee VS, Wong HV, Chan YF
    Virology, 2017 01 15;501:79-87.
    PMID: 27875780 DOI: 10.1016/j.virol.2016.11.009
    Enterovirus A71 (EV-A71) is a neurotropic enterovirus that uses heparan sulfate as an attachment receptor. The molecular determinants of EV-A71-heparan sulfate interaction are unknown. With In silico heparin docking and mutagenesis of all possible lysine residues in VP1, we identified that K162, K242 and K244 are responsible for heparin interaction and inhibition. EV-A71 mutants with K242A and K244A rapidly acquired compensatory mutations, T100K or E98A, and Q145R-T237N respectively, which restored the heparin-binding phenotype. Both VP1-98 and VP1-145 modulates heparin binding. Heparin-binding phenotype was completely abolished with VP1-E98-E145, but was restored by an E98K or E145Q substitution. During cell culture adaptation, EV-A71 rapidly acquired K98 or Q/G145 to restore the heparin-binding phenotype. Together with next-generation sequencing analysis, our results implied that EV-A71 has high genetic plasticity by modulating positively-charged residues at the five-fold axis during in vitro heparin adaptation. Our finding has impact on EV-A71 vaccine production, evolutionary studies and pathogenesis.
    Matched MeSH terms: Viral Proteins/genetics; Viral Proteins/metabolism*
  11. Li YY, Liu H, Fu SH, Li XL, Guo XF, Li MH, et al.
    Infect Genet Evol, 2017 11;55:48-55.
    PMID: 28827175 DOI: 10.1016/j.meegid.2017.08.016
    Getah virus (GETV) was first isolated in Malaysia in 1955. Since then, epidemics in horses and pigs caused by GETV have resulted in huge economic losses. At present, GETV has spread across Eurasia and Southeast Asia, including mainland China, Korea, Japan, Mongolia, and Russia. Data show that the Most Recent Common Ancestor (MRCA) of GETV existed about 145years ago (95% HPD: 75-244) and gradually evolved into four distinct evolutionary populations: Groups I-IV. The MRCA of GETVs in Group III, which includes all GETVs isolated from mosquitoes, pigs, horses, and other animals since the 1960s (from latitude 19°N to 60°N), existed about 51years ago (95% HPD: 51-72). Group III is responsible for most viral epidemics among domestic animals. An analysis of the GETV E2 protein sequence and structure revealed seven common amino acid mutation sites. These sites are responsible for the structural and electrostatic differences detected between widespread Group III isolates and the prototype strain MM2021. These differences may account for the recent geographical radiation of the virus. Considering the economic significance of GETV infection in pigs and horses, we recommend the implementation of strict viral screening and monitoring programs.
    Matched MeSH terms: Viral Proteins/genetics; Viral Proteins/chemistry
  12. Kumar P, Gaur P, Kumari R, Lal SK
    J Cell Biochem, 2019 04;120(4):6449-6458.
    PMID: 30335904 DOI: 10.1002/jcb.27935
    Neuraminidase protein (NA) of influenza A virus (IAV) is popularly known for its sialidase function to assist in the release of progeny virus. However, involvement of NA in other stages of the IAV life cycle also indicates its multifunctional nature and necessity to interact with other host proteins. Here, we report a host protein-heat shock protein 90 (Hsp90), as a novel interacting partner of IAV NA. A classical yeast two-hybrid screen was conducted to identify a new host interacting partner for NA and the interaction was further validated by coimmunoprecipitation from cells, transiently expressing both proteins and also from IAV-infected cells. Confocal imaging showed that both proteins colocalized in the cytoplasm in transfected host cells. Interestingly, increased levels of NA in the presence of Hsp90 was observed, which tends to decrease if adenosine triphosphatase activity of Hsp90 is inhibited using 17-N-allylamino-17-demethoxygeldanamycin (17AAG). This establishes viral NA as a client protein of host chaperone Hsp90 contributing toward NA's stability via the NA-Hsp90 interaction. This is the first report showing the interaction of NA with Hsp90 and its role in stabilizing viral NA thus preventing it from degradation. Enhanced cell survival in the presence of this interaction was also observed, thus suggesting the requirement of stable viral NA, post-IAV infection, for efficient virus production in infected mammalian cells.
    Matched MeSH terms: Viral Proteins/metabolism*; Viral Proteins/chemistry*
  13. Tomlinson KR, Pablo-Rodriguez JL, Bunawan H, Nanyiti S, Green P, Miller J, et al.
    Mol Plant Pathol, 2019 08;20(8):1080-1092.
    PMID: 31154674 DOI: 10.1111/mpp.12813
    Cassava brown streak disease (CBSD) is a leading cause of cassava losses in East and Central Africa, and is currently having a severe impact on food security. The disease is caused by two viruses within the Potyviridae family: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), which both encode atypical Ham1 proteins with highly conserved inosine triphosphate (ITP) pyrophosphohydrolase (ITPase) domains. ITPase proteins are widely encoded by plant, animal, and archaea. They selectively hydrolyse mutagenic nucleotide triphosphates to prevent their incorporation into nucleic acid and thereby function to reduce mutation rates. It has previously been hypothesized that U/CBSVs encode Ham1 proteins with ITPase activity to reduce viral mutation rates during infection. In this study, we investigate the potential roles of U/CBSV Ham1 proteins. We show that both CBSV and UCBSV Ham1 proteins have ITPase activities through in vitro enzyme assays. Deep-sequencing experiments found no evidence of the U/CBSV Ham1 proteins providing mutagenic protection during infections of Nicotiana hosts. Manipulations of the CBSV_Tanza infectious clone were performed, including a Ham1 deletion, ITPase point mutations, and UCBSV Ham1 chimera. Unlike severely necrotic wild-type CBSV_Tanza infections, infections of Nicotiana benthamiana with the manipulated CBSV infectious clones do not develop necrosis, indicating that that the CBSV Ham1 is a necrosis determinant. We propose that the presence of U/CBSV Ham1 proteins with highly conserved ITPase motifs indicates that they serve highly selectable functions during infections of cassava and may represent a euphorbia host adaptation that could be targeted in antiviral strategies.
    Matched MeSH terms: Viral Proteins/metabolism*; Viral Proteins/chemistry
  14. Kho CL, Tan WS, Yusoff K
    J. Biochem. Mol. Biol. Biophys., 2002 Apr;6(2):117-21.
    PMID: 12186767
    The phosphoprotein (P) gene of a heat stable Newcastle disease virus (NDV) was cloned, sequenced and expressed in Escherichia coli. SDS-PAGE analysis of the recombinant P protein (395 amino acids) and a C-terminal extension derivative (424 amino acids), gave rise to two distinct protein bands with molecular masses of approximately 53-55 and 56-58 kDa, respectively, which are approximately 26-30% heavier than those calculated from the deduced amino acid sequences. The differences in molecular mass on SDS-PAGE are thought to be attributed to the acidic nature of the P protein (pI=6.27) and also the different degrees of phosphorylation in the prokaryotic cell. Amino acid sequence comparison of the P protein among the published NDV strains showed that they were highly conserved particularly at the putative phosphorylation sites.
    Matched MeSH terms: Viral Proteins/biosynthesis; Viral Proteins/genetics*; Viral Proteins/chemistry
  15. Chong Teoh T, J Al-Harbi S, Abdulrahman AY, Rothan HA
    Molecules, 2021 Jul 16;26(14).
    PMID: 34299596 DOI: 10.3390/molecules26144321
    Zika virus (ZIKV) represents a re-emerging threat to global health due to its association with congenital birth defects. ZIKV NS2B-NS3 protease is crucial for virus replication by cleaving viral polyprotein at various junctions to release viral proteins and cause cytotoxic effects in ZIKV-infected cells. This study characterized the inhibitory effects of doxycycline against ZIKV NS2B-NS3 protease and viral replication in human skin cells. The in silico data showed that doxycycline binds to the active site of ZIKV protease at a low docking energy (-7.8 Kcal/mol) via four hydrogen bonds with the protease residues TYR1130, SER1135, GLY1151, and ASP83. Doxycycline efficiently inhibited viral NS2B-NS3 protease at average human temperature (37 °C) and human temperature with a high fever during virus infection (40 °C). Interestingly, doxycycline showed a higher inhibitory effect at 40 °C (IC50 = 5.3 µM) compared to 37 °C (9.9 µM). The virus replication was considerably reduced by increasing the concentration of doxycycline. An approximately 50% reduction in virus replication was observed at 20 µM of doxycycline. Treatment with 20 µM of doxycycline reduced the cytopathic effects (CPE), and the 40 µM of doxycycline almost eliminated the CPE of human skin cells. This study showed that doxycycline binds to the ZIKV protease and inhibits its catalytic activity at a low micro-molecular concentration range. Treatment of human skin fibroblast with doxycycline eliminated ZIKV infection and protected the cells against the cytopathic effects of the infection.
    Matched MeSH terms: Viral Proteins/antagonists & inhibitors*; Viral Proteins/metabolism; Viral Proteins/chemistry
  16. Kalbhor MS, Bhowmick S, Alanazi AM, Patil PC, Islam MA
    Biophys Chem, 2021 03;270:106537.
    PMID: 33450550 DOI: 10.1016/j.bpc.2020.106537
    Nipah virus (NiV) infections are highly contagious and can cause severe febrile encephalitis. An outbreak of NiV infection has reported high mortality rates in Southeast Asian countries including Bangladesh, East Timor, Malaysia, Papua New Guinea, Vietnam, Cambodia, Indonesia, Madagascar, Philippines, Thailand and India. Considering the high risk for an epidemic outbreak, the World Health Organization (WHO) declared NiV as an emerging priority pathogen. However, there are no effective therapeutics or any FDA approved drugs available for the treatment of this infection. Among the known nine proteins of NiV, glycoprotein plays an important role in initiating the entry of viruses and attaching to the host cell receptors. Herein, three antiviral databases consisting of 79,892 chemical entities have been computationally screened against NiV glycoprotein (NiV-G). Particularly, multi-step molecular docking followed by extensive molecular binding interactions analyses, binding free energy estimation, in silico pharmacokinetics, synthetic accessibility and toxicity profile evaluations have been carried out for initial identification of potential NiV-G inhibitors. Further, molecular dynamics (MD) simulation has been performed to understand the dynamic properties of NiV-G protein-bound with proposed five inhibitors (G1-G5) and their interactions behavior, and any conformational changes in NiV-G protein during simulations. Moreover, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) based binding free energies (∆G) has been calculated from all MD simulation trajectories to understand the energy contribution of each proposed compound in maintaining and stabilizing the complex binding interactions with NiV-G protein. Proposed compounds showed high negative ∆G values ranging from -166.246 to -226.652 kJ/mol indicating a strong affinity towards the NiV-G protein.
    Matched MeSH terms: Viral Proteins/antagonists & inhibitors*; Viral Proteins/metabolism; Viral Proteins/chemistry
  17. Iqbal A, Lim YA, Surin J, Sim BL
    PLoS One, 2012;7(2):e31139.
    PMID: 22347442 DOI: 10.1371/journal.pone.0031139
    Currently, there is a lack of vital information in the genetic makeup of Cryptosporidium especially in developing countries. The present study aimed at determining the genotypes and subgenotypes of Cryptosporidium in hospitalized Malaysian human immunodeficiency virus (HIV) positive patients.
    Matched MeSH terms: Viral Proteins/genetics*
  18. Zulperi ZM, Omar AR, Arshad SS
    Virus Genes, 2009 Jun;38(3):383-91.
    PMID: 19242786 DOI: 10.1007/s11262-009-0337-2
    Two Malaysian infectious bronchitis virus isolates, MH5365/95 and V9/04 were characterized based on sequence and phylogenetic analyses of S1, S2, M, and N genes. Nucleotide sequence alignments revealed many point mutations, short deletions, and insertions in S1 region of both IBV isolates. Phylogenetic analysis of S1 gene and sequences analysis of M gene indicated that MH5365/95 and V9/04 belong to non-Massachusetts strain. However, both isolates share only 77% identity. Analysis based on S1 gene showed that MH5365/95 shared more than 87% identity to several Chinese strains. Meanwhile, V9/04 showed only 67-77% identity to all the previously studied IBV strains included in this study suggesting it is a variant of IBV isolate that is unique to Malaysia. Phylogenetic analysis suggests, although both isolates were isolated 10 years apart from different states in Malaysia, they shared a common origin. Analysis based on S2 and N genes indicated that both strains are highly related to each other, and there are fewer mutations which occurred in the respective genes.
    Matched MeSH terms: Viral Proteins/genetics*
  19. Lim BN, Choong YS, Ismail A, Glökler J, Konthur Z, Lim TS
    Biotechniques, 2012 Dec;53(6):357-64.
    PMID: 23227986 DOI: 10.2144/000113964
    Directed evolution of nucleotide libraries using recombination or mutagenesis is an important technique for customizing catalytic or biophysical traits of proteins. Conventional directed evolution methods, however, suffer from cumbersome digestion and ligation steps. Here, we describe a simple method to increase nucleotide diversity using single-stranded DNA (ssDNA) as a starting template. An initial PCR amplification using phosphorylated primers with overlapping regions followed by treatment with lambda exonuclease generates ssDNA templates that can then be annealed via the overlap regions. Double-stranded DNA (dsDNA) is then generated through extension with Klenow fragment. To demonstrate the applicability of this methodology for directed evolution of nucleotide libraries, we generated both gene shuffled and regional mutagenesis synthetic antibody libraries with titers of 2×108 and 6×107, respectively. We conclude that our method is an efficient and convenient approach to generate diversity in nucleic acid based libraries, especially recombinant antibody libraries.
    Matched MeSH terms: Viral Proteins/metabolism*
  20. Rothan HA, Han HC, Ramasamy TS, Othman S, Rahman NA, Yusof R
    BMC Infect Dis, 2012;12:314.
    PMID: 23171075 DOI: 10.1186/1471-2334-12-314
    Global resurgence of dengue virus infections in many of the tropical and subtropical countries is a major concern. Therefore, there is an urgent need for the development of successful drugs that are both economical and offer a long-lasting protection. The viral NS2B-NS3 serine protease (NS2B-NS3pro) is a promising target for the development of drug-like inhibitors, which are not available at the moment. In this study, we report retrocyclin-1 (RC-1) production in E. coli as a recombinant peptide to test against dengue NS2B-NS3pro.
    Matched MeSH terms: Viral Proteins/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links