Displaying publications 21 - 31 of 31 in total

Abstract:
Sort:
  1. Thong KL, Passey M, Clegg A, Combs BG, Yassin RM, Pang T
    J Clin Microbiol, 1996 Apr;34(4):1029-33.
    PMID: 8815078
    Molecular characterization of a total of 52 human isolates of Salmonella typhi from Papua New Guinea was performed by using pulsed-field gel electrophoresis (PFGE) after digestion of chromosomal DNA with three restriction endonucleases, XbaI (5'-TCTAGA-3'), AvrII (5'-CCTAGG-3'), and SpeI (5'-ACTAGT-3'). Of the 52 isolates tested, 11 were obtained from patients with fatal typhoid fever and 41 were obtained from patients with nonfatal disease. The 52 isolates showed limited genetic diversity as evidenced by only three different PFGE patterns detected following digestion with XbaI (patterns X1 to X3; F [coefficient of similarity] = 0.86 to 1.0), four patterns detected following digestion with AvrII (patterns A1 to A4; F =0.78 to 1.0), and two patterns detected following digestion with SpeI (patterns S1 and S2; F = 0.97 to 1.0). Of the 52 isolates, 37 were phage typed, and all belonged to phage type D2. All 11 isolates obtained from patients with fatal typhoid fever were identical (F = 1.0) and possessed the PFGE pattern combination X1S1A1, whereas the 41 isolates from patients with nonfatal typhoid fever had various PFGE pattern combinations, the most common being X2S1A2 (39%), X1S1A1 (24%), and X1S1A2 (15%). Thus, all the isolates from patients with the fatal disease had the X1 and A1 patterns, whereas the majority of the isolates from patients with nonfatal typhoid fever possessed the X2 and A2 patterns. The data suggest that there is an association among strains of S. typhi between genotype, as assessed by PFGE patterns, and the capability to cause fatal illness. Analysis of blood and fecal isolates of S. typhi from the same patient also indicated that some genetic changes occur in vivo during the course of infection.
    Matched MeSH terms: Typhoid Fever/microbiology*
  2. Thong KL, Puthucheary S, Yassin RM, Sudarmono P, Padmidewi M, Soewandojo E, et al.
    J Clin Microbiol, 1995 Jul;33(7):1938-41.
    PMID: 7665677
    Pulsed-field gel electrophoresis (PFGE) revealed that multiple genetic variants of Salmonella typhi are simultaneously present in Southeast Asia and are associated with sporadic cases of typhoid fever and occasional outbreaks. Comparative analysis of PFGE patterns also suggested that considerable genetic diversity exists among S. typhi strains and that some PFGE patterns are shared between isolates obtained from Malaysia, Indonesia, and Thailand, implying movement of these strains within these regions of Southeast Asia, where they are endemic.
    Matched MeSH terms: Typhoid Fever/microbiology
  3. Thong KL, Cheong YM, Puthucheary S, Koh CL, Pang T
    J Clin Microbiol, 1994 May;32(5):1135-41.
    PMID: 7914202
    Pulsed-field gel electrophoresis (PFGE) was used to compare and analyze 158 isolates of Salmonella typhi from five well-defined outbreaks of typhoid fever in Malaysia and also isolates involved in sporadic cases of typhoid fever occurring during the same period. Digestion of chromosomal DNAs from these S. typhi isolates with the restriction endonucleases XbaI (5'-TCTAGA-3'), SpeI (5'-ACTAGT-3'), and AvrII (5'-CCTAGG-3') and then PFGE produced restriction endonuclease analysis (REA) patterns consisting of 11 to 24 DNA fragments ranging in size from 20 to 630 kbp. Analysis of the REA patterns generated by PFGE after digestion with XbaI and SpeI indicated that the S. typhi isolates obtained from sporadic cases of infection were much more heterogeneous (at least 13 different REA patterns were detected; Dice coefficient, between 0.73 and 1.0) than those obtained during outbreaks of typhoid fever. The clonal nature and the close genetic identities of isolates from outbreaks in Alor Setar, Penang, Kota Kinabalu, Johor Bahru, and Kota Bahru were suggested by the fact that only a limited number of REA patterns, which mostly differed by only a single band, were detected (one to four patterns; Dice coefficient, between 0.82 and 1.0), although a different pattern was associated with each of these outbreaks. Comparison of REA patterns with ribotyping for 18 S. typhi isolates involved in sporadic cases of infection showed a good correlation, in that 72% of the isolates were in the same group. There was no clear correlation of phage types with a specific REA pattern. We conclude that PFGE of s. typhi chromosomal DNA digested with infrequently cutting restriction endonucleases is a useful method for comparing and differentiating S. typhi isolates for epidemiological purposes.
    Matched MeSH terms: Typhoid Fever/microbiology*
  4. Yap KP, Gan HM, Teh CS, Baddam R, Chai LC, Kumar N, et al.
    J Bacteriol, 2012 Nov;194(21):5970-1.
    PMID: 23045488 DOI: 10.1128/JB.01416-12
    Salmonella enterica serovar Typhi is a human pathogen that causes typhoid fever predominantly in developing countries. In this article, we describe the whole genome sequence of the S. Typhi strain CR0044 isolated from a typhoid fever carrier in Kelantan, Malaysia. These data will further enhance the understanding of its host persistence and adaptive mechanism.
    Matched MeSH terms: Typhoid Fever/microbiology
  5. Yap KP, Gan HM, Teh CS, Chai LC, Thong KL
    BMC Genomics, 2014;15:1007.
    PMID: 25412680 DOI: 10.1186/1471-2164-15-1007
    Typhoid fever is an infectious disease of global importance that is caused by Salmonella enterica subsp. enterica serovar Typhi (S. Typhi). This disease causes an estimated 200,000 deaths per year and remains a serious global health threat. S. Typhi is strictly a human pathogen, and some recovered individuals become long-term carriers who continue to shed the bacteria in their faeces, thus becoming main reservoirs of infection.
    Matched MeSH terms: Typhoid Fever/microbiology
  6. Guan HH, Yoshimura M, Chuankhayan P, Lin CC, Chen NC, Yang MC, et al.
    Sci Rep, 2015 Nov 13;5:16441.
    PMID: 26563565 DOI: 10.1038/srep16441
    ST50, an outer-membrane component of the multi-drug efflux system from Salmonella enterica serovar Typhi, is an obligatory diagnostic antigen for typhoid fever. ST50 is an excellent and unique diagnostic antigen with 95% specificity and 90% sensitivity and is used in the commercial diagnosis test kit (TYPHIDOT(TM)). The crystal structure of ST50 at a resolution of 2.98 Å reveals a trimer that forms an α-helical tunnel and a β-barrel transmembrane channel traversing the periplasmic space and outer membrane. Structural investigations suggest significant conformational variations in the extracellular loop regions, especially extracellular loop 2. This is the location of the most plausible antibody-binding domain that could be used to target the design of new antigenic epitopes for the development of better diagnostics or drugs for the treatment of typhoid fever. A molecule of the detergent n-octyl-β-D-glucoside is observed in the D-cage, which comprises three sets of Asp361 and Asp371 residues at the periplasmic entrance. These structural insights suggest a possible substrate transport mechanism in which the substrate first binds at the periplasmic entrance of ST50 and subsequently, via iris-like structural movements to open the periplasmic end, penetrates the periplasmic domain for efflux pumping of molecules, including poisonous metabolites or xenobiotics, for excretion outside the pathogen.
    Matched MeSH terms: Typhoid Fever/microbiology*
  7. Thong KL, Bhutta ZA, Pang T
    Int J Infect Dis, 2000;4(4):194-7.
    PMID: 11231181
    OBJECTIVE: The goal of this study was to report the molecular analysis of antibiotic-sensitive and multidrug-resistant (MDR) strains of Salmonella typhi, using pulsed-field gel electrophoresis (PFGE), with a particular emphasis on the coexistence of these strains in a typhoid-endemic region of Karachi, Pakistan.

    METHODS: One hundred isolates of S. typhi in humans (50 MDR and 50 antibiotic-sensitive isolates) from sporadic cases of typhoid fever were analyzed by Vi-phage typing, antibiograms and PFGE.

    RESULTS: The MDR S. typhi strains were resistant to ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole. Analysis by PFGE showed that 50 MDR isolates of S. typhi had a single, homogenous PFGE profile, which was distinctly different from that of 50 antibiotic-sensitive isolates obtained in the same time frame from the same area. This latter group of isolates showed much greater diversity of PFGE profiles, as has been observed in other endemic regions.

    CONCLUSIONS: Multidrug-resistant and antibiotic-susceptible strains of S. typhi can coexist in endemic areas as epidemiologically independent pathogens and are not in competition for continued persistence and transmission.

    Matched MeSH terms: Typhoid Fever/microbiology*
  8. Chin CF, Lai JY, Choong YS, Anthony AA, Ismail A, Lim TS
    Sci Rep, 2017 05 19;7(1):2176.
    PMID: 28526816 DOI: 10.1038/s41598-017-01987-8
    Hemolysin E (HlyE) is an immunogenic novel pore-forming toxin involved in the pathogenesis of typhoid fever. Thus, mapping of B-cell epitopes of Salmonella enterica serovar Typhi (S. Typhi) is critical to identify key immunogenic regions of HlyE. A random 20-mer peptide library was used for biopanning with enriched anti-HlyE polyclonal antibodies from typhoid patient sera. Bioinformatic tools were used to refine, analyze and map the enriched peptide sequences against the protein to identify the epitopes. The analysis identified both linear and conformational epitopes on the HlyE protein. The predicted linear GAAAGIVAG and conformational epitope PYSQESVLSADSQNQK were further validated against the pooled sera. The identified epitopes were then used to isolate epitope specific monoclonal antibodies by antibody phage display. Monoclonal scFv antibodies were enriched for both linear and conformational epitopes. Molecular docking was performed to elucidate the antigen-antibody interaction of the monoclonal antibodies against the epitopes on the HlyE monomer and oligomer structure. An in-depth view of the mechanistic and positional characteristics of the antibodies and epitope for HlyE was successfully accomplished by a combination of phage display and bioinformatic analysis. The predicted function and structure of the antibodies highlights the possibility of utilizing the antibodies as neutralizing agents for typhoid fever.
    Matched MeSH terms: Typhoid Fever/microbiology
  9. Mirza S, Kariuki S, Mamun KZ, Beeching NJ, Hart CA
    J Clin Microbiol, 2000 Apr;38(4):1449-52.
    PMID: 10747124
    Molecular analysis of chromosomal DNA from 193 multidrug-resistant (MDR) Salmonella enterica serovar Typhi isolates from 1990 to 1995 from Pakistan, Kuwait, Malaysia, Bangladesh, and India produced a total of five major different pulsed-field gel electrophoresis (PFGE) patterns. Even within a particular country MDR S. enterica serovar Typhi DNA was found to be in different PFGE groups. Similar self-transferable 98-MDa plasmids belonging to either incompatibility group incHI1 or incHI1/FIIA were implicated in the MDR phenotype in S. enterica serovar Typhi isolates from all the locations except Quetta, Pakistan, where the majority were of incFIA. A total of five different PFGE genotypes with six different plasmids, based on incompatibility and restriction endonuclease analysis groups, were found among these MDR S. enterica serovar Typhi isolates.
    Matched MeSH terms: Typhoid Fever/microbiology
  10. Ahmad Hatib NA, Chong CY, Thoon KC, Tee NW, Krishnamoorthy SS, Tan NW
    Ann Acad Med Singap, 2016 Jul;45(7):297-302.
    PMID: 27523510
    INTRODUCTION: Enteric fever is a multisystemic infection which largely affects children. This study aimed to analyse the epidemiology, clinical presentation, treatment and outcome of paediatric enteric fever in Singapore.

    MATERIALS AND METHODS: A retrospective review of children diagnosed with enteric fever in a tertiary paediatric hospital in Singapore was conducted from January 2006 to January 2012. Patients with positive blood cultures for Salmonella typhi or paratyphi were identified from the microbiology laboratory information system. Data was extracted from their case records.

    RESULTS: Of 50 enteric fever cases, 86% were due to Salmonella typhi, with 16.3% being multidrug resistant (MDR) strains. Sixty-two percent of S. typhi isolates were of decreased ciprofloxacin susceptibility (DCS). Five cases were both MDR and DCS. The remaining 14% were Salmonella paratyphi A. There were only 3 indigenous cases. Ninety-four percent had travelled to typhoid-endemic countries, 70.2% to the Indian subcontinent and the rest to Indonesia and Malaysia. All patients infected with MDR strains had travelled to the Indian subcontinent. Anaemia was a significant finding in children with typhoid, as compared to paratyphoid fever (P = 0.04). Although all children were previously well, 14% suffered severe complications including shock, pericardial effusion and enterocolitis. None had typhoid vaccination prior to their travel to developing countries.

    CONCLUSION: Enteric fever is largely an imported disease in Singapore and has contributed to significant morbidity in children. The use of typhoid vaccine, as well as education on food and water hygiene to children travelling to developing countries, needs to be emphasised.

    Matched MeSH terms: Paratyphoid Fever/microbiology; Typhoid Fever/microbiology
  11. Muhammad EN, Abdul Mutalip MH, Hasim MH, Paiwai F, Pan S, Mahmud MAF, et al.
    BMC Infect Dis, 2020 Nov 16;20(1):843.
    PMID: 33198646 DOI: 10.1186/s12879-020-05500-x
    BACKGROUND: Typhoid fever causes global morbidity and mortality and is a significant health burden, particularly in low- and middle-income countries. The direct fecal-oral route is the main transmission mode, but indirect environmental transmission could occur, particularly in urban settings. This study aimed to investigate the burden and trend of typhoid fever, reporting the coverage system between government and private practice and pattern of multidrug-resistant (MDR) typhoid cases in the urban Klang Valley area from 2011 to 2015.

    METHODS: The data from a cross-sectional study retrieved from the e-Notifikasi System, a national reporting system for communicable diseases provided by the Disease Control Division, Ministry of Health Malaysia and secondary data of all the typhoid cases were obtained from the public and private hospitals and laboratories in Klang Valley. Descriptive analysis was performed to examine the sociodemographic characteristics, spatial mapping was conducted to examine trends, and the crude incidence rates of confirmed typhoid cases and percentage of reporting coverage were calculated. Significant differences between MDR and non-MDR Salmonella typhi were determined in the patient's sociodemographic characteristics, which were analyzed using χ2 test. P values typhoid fever cases were reported in Klang Valley; however, only 265 cases were confirmed by culture tests. The crude incidence rates of confirmed cases were between 0.5 to 0.7 but peaked at 1.42 per 100,000 population in 2015. Most typhoid fever cases were observed among men (55.6%), individuals aged 21 to 30 years (27.6%), Malaysians (86.3%) and individuals of Malay ethnicity (52.1%). The reporting coverage of confirmed cases was 78.9% and non-reporting coverage of unconfirmed typhoid cases was 79.5%. The predictive value positive (PVP) was 89.3, and 7.5% were detected as MDR Salmonella typhi. Statistical significance was found in gender, citizenship and ethnicity regarding MDR Salmonella typhi (p = 0.004, p = 0.008 and p = 0.034, respectively).

    CONCLUSIONS: The local transmission of typhoid is still prevalent in the Klang Valley despite rapid urbanization and development in recent years. These findings are essential for policy makers to plan and implement focused and effective preventative activities to curb typhoid infection in urban areas.

    Matched MeSH terms: Typhoid Fever/microbiology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links