Materials and Methods: Fresh aerial parts of four plant species (Artemisia herba alba, Cotula cinerea, Asphodelus tenuifolius, and Euphorbia guyoniana) were collected for the preparation of aqueous extracts. Two levels of dilution (10% and 20%) of the pure extracts were evaluated against Fusarium graminearum and Fusarium sporotrichioides.
Results: The results of this study revealed that the A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana aqueous extracts are effective at both concentrations of 10% and 20% for the Fusarium mycelia growth inhibition. In particular, A. tenuifolius extract is effective against F. graminearum, whereas F. sporotrichioides mycelium growth is strongly affected by the E. guyoniana 20% extract. The phytochemical characterization of the compositions of the aqueous extracts has revealed that the presence of some chemical compounds (tannins, flavonoids, saponins, steroids, and alkaloids) is likely to be responsible for the antifungal activities sought.
Conclusion: The antifungal properties of A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana make these plants of potential interest for the control of fungi affecting both wheat yield and safety.
Experimental: In this study, the suitability of PHWE for extracting bioactive compounds such as phenolics, hydrolysable tannins and flavonoids from Phyllanthus tenellus was investigated by UPLC-qTOF-MS.
Results: Solvent properties of water are significantly increased through imposing temperature at 121 °C and pressure at 15 p.s.i. Pressurized hot water extraction obtained 991-folds higher hydrolysable tannins than methanol extraction.
Conclusion: The extraction yields of hydrolysable tannins with PHWE was almost double of absolute methanol extraction.
METHODS: MetS was induced in Sprague Dawley rats on an HFD, followed by a daily oral gavage of geraniin (25 mg/kg) for 4 wk. The outcomes of geraniin-treated rats were compared with those of untreated rats on either a control diet or an HFD and with rats with MetS treated with metformin on a daily basis (200 mg/kg).
RESULTS: The supplementation of geraniin ameliorated multiple metabolic abnormalities caused by HFD, including hypertension, impaired glucose and lipid metabolism, ectopic fat deposition in the visceral fat and liver, and disturbed antioxidant mechanism and inflammatory response. The benefits conferred by geraniin were comparable to metformin. Transcriptomic analysis revealed a profound influence of geraniin on the hepatic expression profiles. The lipid and steroid metabolic processes that were aberrantly activated by HFD were suppressed by geraniin. Based on the differential transcriptomes, geraniin also exerted a significant modulatory effect on the expression of mitochondrial genes, potentially influencing the mitochondrial activity and leading to the observed beneficial effects.
CONCLUSION: Geraniin supplementation mitigated metabolic anomalies of MetS in rats, making it an attractive drug candidate for further investigation.