Displaying publications 21 - 40 of 82 in total

Abstract:
Sort:
  1. Lowe BG
    Health Phys, 1978 May;34(5):439-44.
    PMID: 568609
    Matched MeSH terms: Soil Pollutants/analysis*
  2. Khan AM, Behkami S, Yusoff I, Md Zain SB, Bakar NKA, Bakar AFA, et al.
    Chemosphere, 2017 Oct;184:673-678.
    PMID: 28628904 DOI: 10.1016/j.chemosphere.2017.06.032
    Rare earth elements (REEs) are becoming significant due to their huge applications in many industries, large-scale mining and refining activities. Increasing usage of such metals pose negative environmental impacts. In this research ICP-MS has been used to analyze soil samples collected from former ex-mining areas in the depths of 0-20 cm, 21-40 cm, and 41-60 cm of residential, mining, natural, and industrial areas of Perak. Principal component analysis (PCA) revealed that soil samples taken from different mining, industrial, residential, and natural areas are separated into four clusters. It was observed that REEs were abundant in most of the samples from mining areas. Concentration of the rare elements decrease in general as we move from surface soil to deeper soils.
    Matched MeSH terms: Soil Pollutants/analysis*
  3. Prathumratana L, Kim R, Kim KW
    Environ Geochem Health, 2020 Mar;42(3):1033-1044.
    PMID: 30206754 DOI: 10.1007/s10653-018-0186-9
    Lead contamination in topsoil of the mining and smelting area of Mitrovica, Kosovo, was investigated for total concentrations and chemical fractions by sequential extraction analysis, mineralogical fractions by X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive X-ray spectrometer (SEM-EDX). The study revealed that all samples contained Pb exceeding USEPA standard of 400 mg kg-1. The highest total concentration of Pb (125,000 mg kg-1) was the soil from the former smelter. Sequential extraction results showed that the predominant form of Pb was associated with Fe-Mn oxide-bound fraction which ranged from 45.37 to 71.61% of total concentrations, while carbonate and silicate Pb-binding fractions were dominant when physical measurements (XRD and SEM-EDX) were applied. Application of Pb isotope ratios (206Pb/207Pb and 208Pb/206Pb), measured by inductively coupled plasma mass spectrometry, identified that Pb contamination is originated from similar anthropogenic source. The results reflected that the Pb contamination in the soil of this area is serious. In order to provide proper approaches on remediation and prevention of health impacts to the people in this area, a continuous monitoring and health risk assessment are recommended.
    Matched MeSH terms: Soil Pollutants/analysis*
  4. Sahibin AR, Shamshuddin J, Fauziah CI, Radziah O, Wan Mohd Razi I, Enio MSK
    Sci Total Environ, 2019 Feb 20;652:573-582.
    PMID: 30368186 DOI: 10.1016/j.scitotenv.2018.10.232
    A study was conducted in an oil palm plantation in Peninsular Malaysia to elucidate the effects of applying Magnesium Rich Synthetic Gypsum (MRSG), a by-product of chemical plant, on the chemical properties of soil, the uptake of heavy metals by the palm trees, the oil quality and its impact on the surrounding environment. The results showed that MRSG application onto soil cropped to oil palm could bring positive impact in terms of soil chemical properties and oil palm production. The quality of the oil was not significantly affected by the continuous MRSG application as shown by the low heavy metals and trace elements of concern content (Cu: 0.062 mg/kg; Fe: 2.10 mg/kg; Mn: 1.93 mg/kg; Pb: 0.006 mg/kg; Zn: 0.103 mg/kg; Cr: 0.354 mg/kg; Ni: 0.037 mg/kg). From the I-geochem index, the soil was found to have values ranging from -3.81 to -1.03 which is considered as uncontaminated. Further, its application did not result in negative impact on the surrounding environment; hence, the quality of the soil and surface water in the plantation and/or the surrounding area remained intact. Phytotoxic elements in the oil palm tissue (As: 0.12 mg/kg; Se: 0.05 mg/kg; Zn: 1.48 mg/kg; Ce: 0.47 mg/kg; La: 0.26 mg/kg; Sr: 3.03 mg/kg) and cytotoxic elements in the oil were below the acceptable limit. Based on the results of the Environmental Monitoring out during the period of the study, it was concluded that application of the by-product of the chemical plant as a source of Mg to enhance soil fertility in the oil palm plantation was considered safe and sustainable. The effects of applying MRSG and Chinese kieserite was almost similar. So, MRSG can be used as a possible source of Mg to replace Chinese kieserite for oil palm production on the Ultisols in Peninsular Malaysia.
    Matched MeSH terms: Soil Pollutants/analysis*
  5. Diami SM, Kusin FM, Madzin Z
    Environ Sci Pollut Res Int, 2016 Oct;23(20):21086-21097.
    PMID: 27491419
    The composition of heavy metals (and metalloid) in surface soils of iron ore mine-impacted areas has been evaluated of their potential ecological and human health risks. The mining areas included seven selected locations in the vicinity of active and abandoned iron ore-mining sites in Pahang, Malaysia. Heavy metals such as Fe, Mn, Cu, Zn, Co, Pb, Cr, Ni, and Cd and metalloid As were present in the mining soils of the studied area, while Cu was found exceeding the soil guideline value at all sampling locations. However, the assessment of the potential ecological risk index (RI) indicated low ecological risk (RI between 44 and 128) with respect to Cd, Pb, Cu, As, Zn, Co, and Ni in the surface soils. Contributions of potential ecological risk [Formula: see text]by metal elements to the total potential ecological RI were evident for Cd, As, Pb, and Cu. Contribution of Cu appears to be consistently greater in the abandoned mining area compared to active iron ore-mining site. For non-carcinogenic risk, no significant potential health risk was found to both children and adults as the hazard indices (HIs) were all below than 1. The lifetime cancer risk (LCR) indicated that As has greater potential carcinogenic risk compared to other metals that may induce carcinogenic effects such as Pb, Cr, and Cd, while the LCR of As for children fell within tolerable range for regulatory purposes. Irrespective of carcinogenic or non-carcinogenic risk, greater potential health risk was found among children (by an order of magnitude higher for most metals) compared to adults. The hazard quotient (HQ) and cancer risk indicated that the pathways for the risk to occur were found to be in the order of ingestion > dermal > inhalation. Overall, findings showed that some metals and metalloid were still present at comparable concentrations even long after cessation of the iron ore-mining activities.
    Matched MeSH terms: Soil Pollutants/analysis*
  6. Mat-Shayuti MS, Tuan Ya TMYS, Abdullah MZ, Megat Khamaruddin PNF, Othman NH
    Environ Sci Pollut Res Int, 2019 Sep;26(26):26419-26438.
    PMID: 31327143 DOI: 10.1007/s11356-019-05954-w
    Steady efforts in using ultrasonic energy to treat oil-contaminated sand started in the early 2000s until today, although pilot studies on the area can be traced to even earlier dates. Owing to the unique characteristics of the acoustic means, the separation of oil from sand has been showing good results in laboratories. This review provides the compilation of researches and insights into the mechanism of separation thus far. Related topics in the areas of oil-contaminated sand characterizations, fundamental ultrasonic cleaning, and cavitation effects are also addressed. Nevertheless, many of the documented works are only at laboratory or pilot-scale level, and the comprehensive interaction between ultrasonic parameters towards cleaning efficiencies may not have been fully unveiled. Gaps and opportunities are also presented at the end of this article.
    Matched MeSH terms: Soil Pollutants/analysis*
  7. Ong GH, Wong LS, Tan AL, Yap CK
    Environ Monit Assess, 2016 Jan;188(1):40.
    PMID: 26687083 DOI: 10.1007/s10661-015-5042-0
    Centella asiatica is a commonly used medicinal plant in Malaysia. As heavy metal accumulation in medicinal plants which are highly consumed by human is a serious issue, thus the assessment of heavy metals in C. asiatica is important for the safety of consumers. In this study, the heavy metal accumulation in C. asiatica and the potential health risks were investigated. Samples of C. asiatica and surface soils were collected from nine different sites around Peninsular Malaysia. The concentration of six heavy metals namely Cd, Cu, Ni, Fe, Pb and Zn were determined by air-acetylene flame atomic absorption spectrophotometer (AAS). The degree of anthropogenic influence was assessed by calculating the enrichment factor (EF) and index of geoaccumulation (Igeo). The heavy metal uptake into the plant was estimated through the calculation of translocation factor (TF), bioconcentration factor (BCF) and correlation study. Estimated daily intakes (EDI) and target hazard quotients (THQ) were used to determine the potential health risk of consuming C. asiatica. The results showed that the overall surface soil was polluted by Cd, Cu and Pb, while the uptake of Zn and Ni by the plants was high. The value of EDI and THQ showed that the potential of Pb toxicity in C. asiatica was high as well. As heavy metal accumulation was confirmed in C. asiatica, daily consumption of the plant derived from polluted sites in Malaysia was not recommended.
    Matched MeSH terms: Soil Pollutants/analysis*
  8. Ho YB, Zakaria MP, Latif PA, Saari N
    Sci Total Environ, 2014 Aug 1;488-489:261-7.
    PMID: 24836135 DOI: 10.1016/j.scitotenv.2014.04.109
    Repeated applications of animal manure as fertilizer are normal agricultural practices that may release veterinary antibiotics and hormones into the environment from treated animals. Broiler manure samples and their respective manure-amended agricultural soil samples were collected in selected locations in the states of Selangor, Negeri Sembilan and Melaka in Malaysia to identify and quantify veterinary antibiotic and hormone residues in the environment. The samples were analyzed using ultrasonic extraction followed by solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The broiler manure samples were found to be contaminated with at least six target analytes, namely, doxycycline, enrofloxacin, flumequine, norfloxacin, trimethoprim and tylosin. These analytes were detected in broiler manure samples with maximum concentrations reaching up to 78,516 μg kg(-1) dry weight (DW) (doxycycline). For manure-amended agricultural soil samples, doxycycline and enrofloxacin residues were detected in every soil sample. The maximum concentration of antibiotic detected in soil was 1331 μg kg(-1) DW (flumequine). The occurrence of antibiotics and hormones in animal manure at high concentration poses a risk of contaminating agricultural soil via fertilization with animal manure. Some physico-chemical parameters such as pH, total organic carbon (TOC) and metal content played a considerable role in the fate of the target veterinary antibiotics and progesterone in the environment. It was suggested that these parameters can affect the adsorption of pharmaceuticals to solid environmental matrices.
    Matched MeSH terms: Soil Pollutants/analysis*
  9. Chen GX, He WW, Wang Y, Zou YD, Liang JB, Liao XD, et al.
    Sci Total Environ, 2014 May 1;479-480:241-6.
    PMID: 24561929 DOI: 10.1016/j.scitotenv.2014.01.124
    The degradation behavior of veterinary antibiotics in soil is commonly studied using the following methods of adding antibiotics to the soil: (i) adding manure collected from animals fed with a diet containing antibiotics, (ii) adding antibiotic-free animal manure spiked with antibiotics and (iii) directly adding antibiotics. No research simultaneously comparing different antibiotic addition methods was found. Oxytetracycline (OTC) was used as a model antibiotic to compare the effect of the three commonly used antibiotic addition methods on OTC degradation behavior in soil. The three treatment methods have similar trends, though OTC degradation half-lives show the following significant differences (P<0.05): manure from swine fed OTC (treatment A)soil. Because the main entry route for veterinary antibiotics into soil is via the manure of animals given with antibiotics, the most appropriate method to study the degradation and ecotoxicity of antibiotic residues in soil may be to use manure from animals that are given a particular antibiotic, rather than by adding it directly to the soil.
    Matched MeSH terms: Soil Pollutants/analysis
  10. Gan S, Yap CL, Ng HK, Venny
    J Hazard Mater, 2013 Nov 15;262:691-700.
    PMID: 24121640 DOI: 10.1016/j.jhazmat.2013.09.023
    This study aims to investigate the impacts of ethyl lactate (EL) based Fenton treatment on soil quality for polycyclic aromatic hydrocarbons (PAHs)-contaminated soils. Accumulation of oxygenated-polycyclic aromatic hydrocarbons (oxy-PAHs) was observed, but quantitative measurement on the most abundant compound 9,10-anthraquinone (ATQ) showed lower accumulation of the compound than that reported for ethanol (ET) based Fenton treatment. In general, as compared to conventional water (CW) based Fenton treatment, the EL based Fenton treatment exerted either a lower or higher negative impact on soil physicochemical properties depending on the property type and shared the main disadvantage of reduced soil pH. For revegetation, EL based Fenton treatment was most appropriately adopted for soil with native pH >/~ 6.2 in order to obtain a final soil pH >/~ 4.9 subject to the soil buffering capacity.
    Matched MeSH terms: Soil Pollutants/analysis
  11. Shafie NA, Aris AZ, Zakaria MP, Haris H, Lim WY, Isa NM
    PMID: 23043340 DOI: 10.1080/10934529.2012.717810
    An investigative study was carried out in Langat River to determine the heavy metal pollution in the sediment with 22 sampling stations selected for the collection of sediment samples. The sediment samples were digested and analyzed for extractable metal ((48)Cd, (29)Cu, (30)Zn, (33)As, (82)Pb) using the Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Parameters, such as pH, Eh, electrical conductivity (EC), salinity, cation exchange capacity (CEC) and loss on ignition (LOI) were also determined. The assessment of heavy metal pollution was derived using the enrichment factors (EF) and geoaccumulation index (I(geo)). This study revealed that the sediment is predominantly by As > Cd > Pb > Zn > Cu. As recorded the highest EF value at 187.45 followed by Cd (100.59), Pb (20.32), Zn (12.42) and Cu (3.46). This is similar to the I(geo), which indicates that the highest level goes to As (2.2), exhibits moderately polluted. Meanwhile, Cd recorded 1.8 and Pb (0.23), which illustrates that both of these elements vary from unpolluted to moderately polluted. The Cu and Zn levels are below 0, which demonstrates background concentrations. The findings are expected to update the current status of the heavy metal pollution as well as creating awareness concerning the security of the river water as a drinking water source.
    Matched MeSH terms: Soil Pollutants/analysis*
  12. Ashraf MA, Maah MJ, Yusoff I
    ScientificWorldJournal, 2012;2012:125608.
    PMID: 22566758 DOI: 10.1100/2012/125608
    This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES). Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As.
    Matched MeSH terms: Soil Pollutants/analysis
  13. Tompkins DS, Bakar BB, Hill SJ
    J Environ Monit, 2012 Jan;14(1):279-91.
    PMID: 22130476 DOI: 10.1039/c1em10578g
    For decades Malaysia was the world's largest producer of Sn, but now the vast open cast mining operations have left a legacy of some 100,000 ha of what is effectively wasteland, covered with a mosaic of tailings and lagoons. Few plants naturally recolonise these areas. The demand for such land for both urban expansion and agricultural use has presented an urgent need for better characterisation. This study reports on the formation of artificial soils from alluvial Sn mining waste with a focus on the effects of experimental treatments on soil chemistry. Soil organic matter, clay, and pH were manipulated in a controlled environment. Adding both clay tailings and peat enhanced the cation exchange capacity of sand tailings but also reduced the pH. The addition of peat reduced the extractable levels of some elements but increased the availability of Ca and Mg, thus proving beneficial. The use of clay tailings increased the levels of macro and micronutrients but also released Al, As, La, Pb and U. Additionally, the effects of soil mix and mycorrhizal treatments on growth and foliar chemistry were studied. Two plant species were selected: Panicum milicaeum and Pueraria phaseoloides. Different growth patterns were observed with respect to the additions of peat and clay. The results for mycorrhizal treatment (live inoculum or sterile carrier medium) are more complex, but both resulted in improved growth. The use of mycorrhizal fungi could greatly enhance rehabilitation efforts on sand tailings.
    Matched MeSH terms: Soil Pollutants/analysis
  14. Sadegh-Zadeh F, Wahid SA, Seh-Bardan BJ, Othman R, Omar D
    J Environ Sci Health B, 2012;47(2):144-51.
    PMID: 22251214 DOI: 10.1080/03601234.2012.624481
    This study was carried out to determine the sorption-desorption, degradation and leaching of napropamide in selected Malaysian soils. The sorption capacities of the selected Malaysian soils for napropamide were the following in descending order: Linau > Teringkap > Gunung Berinchang > Jambu > Rudua > Baging soil. The results indicate that napropamide degradation decreased with increasing soil sorption capacity. Napropamide was leached out earlier in the Baging soil than the other soils. Overall, the application of napropamide in the selected Malaysian soils would not pose a threat to the environment except in soil with low organic matter and clay content and high hydraulic conductivity, such as the Baging soil.
    Matched MeSH terms: Soil Pollutants/analysis
  15. Agamuthu P, Abioye OP, Aziz AA
    J Hazard Mater, 2010 Jul 15;179(1-3):891-4.
    PMID: 20392562 DOI: 10.1016/j.jhazmat.2010.03.088
    Soil contamination by used lubricating oil from automobiles is a growing concern in many countries, especially in Asian and African continents. Phytoremediation of this polluted soil with non-edible plant like Jatropha curcas offers an environmental friendly and cost-effective method for remediating the polluted soil. In this study, phytoremediation of soil contaminated with 2.5 and 1% (w/w) waste lubricating oil using J. curcas and enhancement with organic wastes [Banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] was undertaken for a period of 180 days under room condition. 56.6% and 67.3% loss of waste lubricating oil was recorded in Jatropha remediated soil without organic amendment for 2.5% and 1% contamination, respectively. However addition of organic waste (BSG) to Jatropha remediation rapidly increases the removal of waste lubricating oil to 89.6% and 96.6% in soil contaminated with 2.5% and 1% oil, respectively. Jatropha root did not accumulate hydrocarbons from the soil, but the number of hydrocarbon utilizing bacteria was high in the rhizosphere of the Jatropha plant, thus suggesting that the mechanism of the oil degradation was via rhizodegradation. These studies have proven that J. curcas with organic amendment has a potential in reclaiming hydrocarbon-contaminated soil.
    Matched MeSH terms: Soil Pollutants/analysis*
  16. Zarcinas BA, Ishak CF, McLaughlin MJ, Cozens G
    Environ Geochem Health, 2004 Dec;26(4):343-57.
    PMID: 15719158
    In a reconnaisance soil geochemical and plant survey undertaken to study the heavy metal uptake by major food crops in Malaysia, 241 soils were analysed for cation exchange capacity (CEC), organic carbon (C), pH, electrical conductivity (EC) and available phosphorus (P) using appropriate procedures. These soils were also analysed for arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn) using aqua regia digestion, together with 180 plant samples using nitric acid digestion. Regression analysis between the edible plant part and aqua regia soluble soil As, Cd, Cr, Cu, Hg, Ni, Pb and Zn concentrations sampled throughout Peninsular Malaysia, indicated a positive relationship for Pb in all the plants sampled in the survey (R2 = 0.195, p < 0.001), for Ni in corn (R2 = 0.649, p < 0.005), for Cu in chili (R2 = 0.344, p < 0.010) and for Zn in chili (R2 = 0.501, p < 0.001). Principal component analysis of the soil data suggested that concentrations of Co, Ni, Pb and Zn were strongly correlated with concentrations of Al and Fe, which is suggestive of evidence of background variations due to changes in soil mineralogy. Thus the evidence for widespread contamination of soils by these elements through agricultural activities is not strong. Chromium was correlated with soil pH and EC, Na, S, and Ca while Hg was not correlated with any of these components, suggesting diffuse pollution by aerial deposition. However As, Cd, Cu were strongly associated with organic matter and available and aqua regia soluble soil P, which we attribute to inputs in agricultural fertilisers and soil organic amendments (e.g. manures, composts).
    Matched MeSH terms: Soil Pollutants/analysis*
  17. Ahmed OH, Ahmad HM, Musa HM, Rahim AA, Rastan SO
    ScientificWorldJournal, 2005 Jan 21;5:42-9.
    PMID: 15674449
    In Malaysia, pineapples are grown on peat soils, but most K fertilizer recommendations do not take into account K loss through leaching. The objective of this study was to determine applied K use efficiency under a conventionally recommended fertilization regime in pineapple cultivation with residues removal. Results showed that K recovery from applied K fertilizer in pineapple cultivation on tropical peat soil was low, estimated at 28%. At a depth of 0-10 cm, there was a sharp decrease of soil total K, exchangeable K, and soil solution K days after planting (DAP) for plots with K fertilizer. This decline continued until the end of the study. Soil total, exchangeable, and solution K at the end of the study were generally lower than prior values before the study. There was no significant accumulation of K at depths of 10-25 and 25-45 cm. However, K concentrations throughout the study period were generally lower or equal to their initial status in the soil indicating leaching of the applied K and partly explained the low K recovery. Potassium losses through leaching in pineapple cultivation on tropical peat soils need to be considered in fertilizer recommendations for efficient recovery of applied K.
    Matched MeSH terms: Soil Pollutants/analysis
  18. Azizi AB, Lim MP, Noor ZM, Abdullah N
    Ecotoxicol Environ Saf, 2013 Apr;90:13-20.
    PMID: 23294636 DOI: 10.1016/j.ecoenv.2012.12.006
    Experiments were conducted to remove heavy metals (Cr, Cd, Pb, Cu and Zn) from urban sewage sludge (SS) amended with spent mushroom compost (SMC) using worms, Lumbricus rubellus, for 105 days, after 21 days of pre-composting. Five combinations of SS/SMC treatments were prepared in triplicate along with a control for each treatment in microcosms. Analysis of the earthworms' multiplication and growth and laboratory analysis were conducted during the tenth and fifteenth week of vermicomposting. Our result showed that the final biomass of earthworms (mg) and final number of earthworms showed significant differences between treatments i.e. F=554.70, P=0.00 and F=729.10, P=0.00 respectively. The heavy metals Cr, Cd and Pb contained in vermicompost were lower than initial concentrations, with 90-98.7 percent removal on week ten. However, concentrations of Cu and Zn, that are considered as micronutrients, were higher than initial concentrations, but they were 10-200-fold lower than the EU and USA biosolid compost limits and Malaysian Recommended Site Screening Levels for Contaminated Land (SSLs). An increment of heavy metals were recorded in vermicompost for all treatments on week fifteen compared to week ten, while concentration of heavy metals in earthworms' tissue were lower compared to vermicompost. Hence, it is suggested that earthworms begin to discharge heavy metals into their surroundings and it was evident that the earthworms' heavy metals excretion period was within the interval of ten to fifteen weeks.
    Matched MeSH terms: Soil Pollutants/analysis
  19. Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, Din MF
    Environ Monit Assess, 2016 Apr;188(4):206.
    PMID: 26940329 DOI: 10.1007/s10661-016-5211-9
    Increasing heavy metal (HM) concentrations in the soil have become a significant problem in the modern industrialized world due to several anthropogenic activities. Heavy metals (HMs) are non-biodegradable and have long biological half lives; thus, once entered in food chain, their concentrations keep on increasing through biomagnification. The increased concentrations of heavy metals ultimately pose threat on human life also. The one captivating solution for this problem is to use green plants for HM removal from soil and render it harmless and reusable. Although this green technology called phytoremediation has many advantages over conventional methods of HM removal from soils, there are also many challenges that need to be addressed before making this technique practically feasible and useful on a large scale. In this review, we discuss the mechanisms of HM uptake, transport, and plant tolerance mechanisms to cope with increased HM concentrations. This review article also comprehensively discusses the advantages, major challenges, and future perspectives of phytoremediation of heavy metals from the soil.
    Matched MeSH terms: Soil Pollutants/analysis*
  20. Kee YL, Mukherjee S, Pariatamby A
    Chemosphere, 2015 Oct;136:111-7.
    PMID: 25966329 DOI: 10.1016/j.chemosphere.2015.04.074
    This study was carried out to evaluate the efficiency of Guar gum in removing Persistent Organic Pollutants (POPs), viz. phenol,2,4-bis(1,1-dimethylethyl) and bis(2-ethylhexyl) phthalate (DEHP), from farm effluent. The removal efficiency was compared with alum. The results indicated that 4.0 mg L(-1) of Guar gum at pH 7 could remove 99.70% and 99.99% of phenol,2,4-bis(1,1-dimethylethyl) and DEHP, respectively. Box Behnken design was used for optimization of the operating parameters for optimal POPs removal. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy studies were conducted on the flocs. SEM micrographs showed numerous void spaces in the flocs produced by Guar gum as opposed to those produced by alum. This indicated why Guar gum was more effective in capturing and removal of suspended particles and POPs as compared to alum. FTIR spectra indicated a shift in the bonding of functional groups in the flocs produced by Guar gum as compared to raw Guar gum powder signifying chemical attachment of the organics present in the effluent to the coagulant resulting in their removal. Guar gum is highly recommended as a substitute to chemical coagulant in treating POPs due to its non-toxic and biodegradable characteristics.
    Matched MeSH terms: Soil Pollutants/analysis
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links