METHODS: The European Association of Nuclear Medicine (EANM) procedure guidelines version 2.0 for FDG-PET tumor imaging has adhered for this purpose. A NEMA2012/IEC2008 phantom was filled with tumor to background ratio of 10:1 with the activity concentration of 30 kBq/ml ± 10 and 3 kBq/ml ± 10% for each radioisotope. The phantom was scanned using different acquisition times per bed position (1, 5, 7, 10 and 15 min) to determine the Tmin. The definition of Tmin was performed using an image coefficient of variations (COV) of 15%.
RESULTS: Tmin obtained for 18F, 68Ga and 124I were 3.08, 3.24 and 32.93 min, respectively. Quantitative analyses among 18F, 68Ga and 124I images were performed. Signal-to-noise ratio (SNR), contrast recovery coefficients (CRC), and visibility (VH) are the image quality parameters analysed in this study. Generally, 68Ga and 18F gave better image quality as compared to 124I for all the parameters studied.
CONCLUSION: We have defined Tmin for 18F, 68Ga and 124I SPECT CT imaging based on NEMA2012/IEC2008 phantom imaging. Despite the long scanning time suggested by Tmin, improvement in the image quality is acquired especially for 124I. In clinical practice, the long acquisition time, nevertheless, may cause patient discomfort and motion artifact.
METHODS: In this pictorial review, we present six different scenarios of using 18F-FDG PET-CT in the management of suspicious pulmonary nodule or mass. The advantages and limitations of 18F-FDG PET-CT and Herder model are discussed.
RESULTS: 18F-FDG PET-CT with risk assessment using Herder model provides added value in characterising indeterminate pulmonary nodules. Besides, 18F-FDG PET-CT is valuable to guide the site of biopsy and provide accurate staging of lung cancer.
CONCLUSION: To further improve its diagnostic accuracy, careful history taking, and CT morphological evaluation should be taken into consideration when interpreting 18FFDG PET-CT findings in patients with these nodules.
METHODS: Nine subjects were injected intravenously with the mean (18)F-FDG dose of 292.42 MBq prior to whole body PET/CT scanning. Kidneys and urinary bladder doses were estimated by using two approaches which are the total injected activity of (18)F-FDG and organs activity concentration of (18)F-FDG based on drawn ROI with the application of recommended dose coefficients for (18)F-FDG described in the ICRP 80 and ICRP 106.
RESULTS: The mean percentage difference between calculated dose and measured dose ranged from 98.95% to 99.29% for the kidneys based on ICRP 80 and 98.96% to 99.32% based on ICRP 106. Whilst, the mean percentage difference between calculated dose and measured dose was 97.08% and 97.27% for urinary bladder based on ICRP 80 while 96.99% and 97.28% based on ICRP 106. Whereas, the range of mean percentage difference between calculated and measured organ doses derived from ICRP 106 and ICRP 80 for kidney doses were from 17.00% to 40.00% and for urinary bladder dose was 18.46% to 18.75%.
CONCLUSIONS: There is a significant difference between calculated dose and measured dose. The use of organ activity estimation based on drawn ROI and the latest version of ICRP 106 dose coefficient should be explored deeper to obtain accurate radiation dose to patients.
Case Report: Three cases that had been initially presented as a cystic neck lesion in which a benign etiology was considered primarily were compiled in this study. PTC was only diagnosed after surgical excision of these cystic neck lesions in the first two cases, and after performing fine needle aspiration cytology (FNAC) and an 18fluorine-fluorodeoxyglucose positron emission tomography computed tomography (18F-FDG-PET CT) scan in the latter case.
Conclusion: PTC can sometimes present as a cystic neck mass; a presentation which is usually related to a benign lesion. This case series emphasizes that patients who appear to have a solitary cystic neck mass must be treated with a high index of clinical suspicion. Although not a first-line imaging modality, 18F-FDG-PET can be extremely useful in assessing patients with a cystic neck lesion, where diagnosis is still uncertain after standard investigations such as ultrasonography and FNAC have been performed.
MATERIALS AND METHODS: 18F-FDG PET/CT images of 14 healthy control (HC) subjects (MoCA score > 26 (mean+SD~ 26.93+0.92) with no clinical evidence of cognitive deficits or neurological disease) and 16 AD patients (MoCA ≤22 (mean+SD~18.6+9.28)) were pre-processed in SPM12 while using our developed Malaysian healthy control brain template. The AD patients were assessed for disease severity using ADAS-Cog neuropsychological test. KNE96 template was used for registration-induced deformation in comparison with the ICBM templates. All deformation fields were corrected using the Malaysian healthy control template. The images were then nonlinearly modified by DARTEL to segment grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) to produce group-specific templates. Age, intracranial volume, MoCA score, and ADASCog score were used as variables in two sample t test between groups. The inference of our brain analysis was based on a corrected threshold of p<0.001 using Z-score threshold of 2.0, with a positive value above it as hypometabolic. The relationship between regional atrophy in GM and WM atrophy were analysed by comparing the means of cortical thinning between normal control and three AD stages in 15 clusters of ROI based on Z-score less than 2.0 as atrophied.
RESULTS: One-way ANOVA indicated that the means were equal for TIV, F(2,11) = 1.310, p=0.309, GMV, F(2,11) = 0.923, p=0.426, WMV, F(2,11) = 0.158, p=0.856 and CSF, F(2,11) = 1.495 p=0.266. Pearson correlations of GM, WM and CSF volume between HC and AD groups indicated the presence of brain atrophy in GM (p=-0.610, p<0.0001), WM (p=-0.178, p=0.034) and TIV (p=-0.374, p=0.042) but showed increased CSF volume (p=0.602, p<0.0001). Voxels analysis of the 18FFDG PET template revealed that GM atrophy differs significantly between healthy control and AD (p<0.0001). Zscore comparisons in the region of GM & WM were shown to distinguish AD patients from healthy controls at the prefrontal cortex and parahippocampal gyrus. The atrophy rate within each ROI is significantly different between groups (c2=35.9021, df=3, p<0.0001), Wilcoxon method test showed statistically significant differences were observed between Moderate vs. Mild AD (p<0.0001), Moderate AD vs. healthy control (p=0.0005), Mild AD vs. HC (p=0.0372) and Severe AD vs. Moderate AD (p<0.0001). The highest atrophy rate within each ROI between the median values ranked as follows severe AD vs. HC (p<0.0001) > mild AD vs. HC (p=0.0091) > severe AD vs. moderate AD (p=0.0143).
CONCLUSION: We recommend a reliable method in measuring the brain atrophy and locating the patterns of hypometabolism using a group-specific template registered to a quantitatively validated KNE96 group-specific template. The studied regions together with neuropsychological test approach is an effective method for the determination of AD severity in a Malaysian population.