Displaying publications 21 - 40 of 943 in total

Abstract:
Sort:
  1. Kamarudin MNA, Sarker MMR, Kadir HA, Ming LC
    J Ethnopharmacol, 2017 Jul 12;206:245-266.
    PMID: 28495603 DOI: 10.1016/j.jep.2017.05.007
    ETHNOPHARMACOLOGICAL RELEVANCE: Clinacanthus nutans (Burm. f.) Lindau, a widely used medicinal plant, is extensively grown in tropical Asia and Southeast Asian countries. C. nutans, with its broad spectrum of pharmacological activities, has been traditionally used to treat cancer, inflammatory disorders, diabetes, insect bites, and skin problems, consumed as a vegetable, mixed with fresh juices, in concoctions, and as a whole plant. The present review analyzes the advances in the ethnopharmacology, phytochemistry, pharmacology, and toxicology of C. nutans. In addition, the needs and perspectives for future investigation of this plant are addressed.

    AIM OF THE REVIEW: This review aims to provide a comprehensive report on the ethnomedicinal use, phytochemistry, pharmacological activities, molecular mechanisms, and nutritional values of C. nutans. The present review will open new avenues for further in-depth pharmacological studies of C. nutans for it to be developed as a potential nutraceutical and to improve the available products in the market.

    MATERIAL AND METHODS: All the available information on C. nutans was collected using the key words "Clinacanthus nutans" and/or "ethnomedicine" and/or "phytochemicals" and/or "anticancer" and/or "anti-inflammatory" and/or "antiviral" through an electronic search of the following databases: PubMed, Web of Science, EMBASE, Cochrane Library, Clinical Trials.org, SciFinder Scholar, Scopus, and Google Scholar. In addition, unpublished materials, Ph.D. and M.Sc. dissertations, conference papers, and ethnobotanical textbooks were used. The Plant List (www.theplantlist.org) and International Plant Name Index databases were used to validate the scientific name of the plant.

    RESULTS: The literature supported the ethnomedicinal uses of C. nutans as recorded in Thailand, Indonesia, and Malaysia for various purposes. Bioactivities experimentally proven for C. nutans include cytotoxic, anticancer, antiviral, anti-inflammatory, immunomodulatory, antidiabetic, antioxidant, antihyperlipidemic, antimicrobial, and chemotherapeutic (in aquaculture) activities. Most of these activities have so far only been investigated in chemical, cell-based, and animal assays. Various groups of phytochemicals including five sulfur-containing glycosides, eight chlorophyll derivatives, nine cerebrosides, and a monoacylmonogalactosyl glycerol are present in C. nutans. The presence of two glycerolipids, four sulfur-containing compounds, six known flavones, a flavanol, four flavonols, two phytosterols, one polypeptide, and various phenolics and fatty acids largely influences its diverse bioactivities. Numerous reports justify the ethnomedicinal use of C. nutans as an antiviral agent in treating herpes simplex virus and varicella-zoster virus infections and as part of a traditional anticancer anti-inflammatory concoction agent for various inflammatory diseases. C. nutans tea was reported to have a good percentage of carbohydrate, crude protein, minerals, essential amino acids, nonessential amino acids, and essential fatty acids. Acute, subacute, and subchronic toxicity studies demonstrated that oral administration of ethanol and methanol extracts of C. nutans to male Swiss albino mice and male Sprague-Dawley (SD) rats, respectively, did not lead to any toxicity or adverse effects on the animal behavior and organs when used in amounts as high as 2g/kg.

    CONCLUSION: The collected literatures demonstrated that, as an important traditional medicine, C. nutans is a promising ethnomedicinal plant with various extracts and bioactive compounds exhibiting multifarious bioactivities. However, it is important for future studies to conduct further in vitro and in vivo bioactivity evaluations systematically, following the standard pharmacology guidelines. It is crucial to elucidate in-depth molecular mechanisms, structure-activity relationships, and potential synergistic and antagonistic effects of multi-component extracts and bioactive constituents derived from C. nutans. Further studies should also focus on comprehensive toxicity that includes long-term effects and adverse effects on target organs of C. nutans and bioactive compounds in correlation with the specific pharmacological effects.

    Matched MeSH terms: Plants, Medicinal*
  2. Alharbi KS, Almalki WH, Makeen HA, Albratty M, Meraya AM, Nagraik R, et al.
    J Food Biochem, 2022 Dec;46(12):e14387.
    PMID: 36121313 DOI: 10.1111/jfbc.14387
    Breast cancer (BC) is one of the most challenging cancers to treat, accounting for many cancer-related deaths. Over some years, chemotherapy, hormone treatment, radiation, and surgeries have been used to treat cancer. Unfortunately, these treatment options are unsuccessful due to crucial adverse reactions and multidrug tolerance/resistance. Although it is clear that substances in the nutraceuticals category have a lot of anti-cancer activity, using a supplementary therapy strategy, in this case, could be very beneficial. Nutraceuticals are therapeutic agents, which are nutrients that have drug-like characteristics and can be used to treat diseases. Plant nutraceuticals categorized into polyphenols, terpenoids, vitamins, alkaloids, and flavonoids are part of health food products, that have great potential for combating BC. Nutraceuticals can reduce BC's severity, limit malignant cell growth, and modify cancer-related mechanisms. Nutraceuticals acting by attenuating Hedgehog, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Notch, and Wnt/β-catenin signaling are the main pathways in controlling the self-renewal of breast cancer stem cells (BCSCs). This article reviews some important nutraceuticals and their modes of action, which can be very powerful versus BC. PRACTICAL APPLICATIONS: Nutraceuticals' importance to the control and diagnosis of breast cancer is undeniable and cannot be overlooked. Natural dietary compounds have a wide range of uses and have been used in traditional medicine. In addition, these natural chemicals can enhance the effectiveness of other traditional medicines. They may also be used as a treatment process independently because of their capacity to affect several cancer pathways. This study highlights a variety of natural chemicals, and their mechanisms of action, routes, synergistic effects, and future potentials are all examined.
    Matched MeSH terms: Plants, Medicinal*
  3. Mahlia TMI, Ismail N, Hossain N, Silitonga AS, Shamsuddin AH
    Environ Sci Pollut Res Int, 2019 May;26(15):14849-14866.
    PMID: 30937750 DOI: 10.1007/s11356-019-04563-x
    Due to global warming and increasing price of fossil fuel, scientists all over the world have been trying to find reliable alternative fuels. One of the most potential candidates is renewable energy from biomass. The race for renewable energy from biomass has long begun and focused on to combat the deteriorating condition of the environment. Palm oil has been in the spotlight as an alternative of bioenergy sources to resolve fossil fuel problem due to its environment-friendly nature. This review will look deep into the origins of palm oil and how it is processed, bioproducts from this biomass, and oil palm biomass-based power plant in Malaysia. Palm oil is usually processed from oil palm fruits and other parts of the oil palm plant are candidates for raw material of bioproduct generation. Oil palm biomass can be turned into three subcategories: bioproduct, biofuels, and biopower. Focusing on biofuel, the biodiesel from palm oil will be explored in detail and its implication in Malaysia as one of the biggest producers of oil palm in the world will also be emphasized comprehensively. The paper presents the detail of a schematic flow diagram of a palm oil mill process of transforming oil palm into crude palm oil and it wastes. This paper will also discuss the current oil palm biomass power plants in Malaysia. Palm oil has been proven itself as a potential alternative to reduce negative environmental impact of global warming.
    Matched MeSH terms: Power Plants*
  4. Delavaux CS, LaManna JA, Myers JA, Phillips RP, Aguilar S, Allen D, et al.
    Commun Biol, 2023 Oct 19;6(1):1066.
    PMID: 37857800 DOI: 10.1038/s42003-023-05410-z
    One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.
    Matched MeSH terms: Plants/microbiology
  5. Akbari SI, Prismantoro D, Permadi N, Rossiana N, Miranti M, Mispan MS, et al.
    Microbiol Res, 2024 Jun;283:127665.
    PMID: 38452552 DOI: 10.1016/j.micres.2024.127665
    Drought-induced stress represents a significant challenge to agricultural production, exerting adverse effects on both plant growth and overall productivity. Therefore, the exploration of innovative long-term approaches for addressing drought stress within agriculture constitutes a crucial objective, given its vital role in enhancing food security. This article explores the potential use of Trichoderma, a well-known genus of plant growth-promoting fungi, to enhance plant tolerance to drought stress. Trichoderma species have shown remarkable potential for enhancing plant growth, inducing systemic resistance, and ameliorating the adverse impacts of drought stress on plants through the modulation of morphological, physiological, biochemical, and molecular characteristics. In conclusion, the exploitation of Trichoderma's potential as a sustainable solution to enhance plant drought tolerance is a promising avenue for addressing the challenges posed by the changing climate. The manifold advantages of Trichoderma in promoting plant growth and alleviating the effects of drought stress underscore their pivotal role in fostering sustainable agricultural practices and enhancing food security.
    Matched MeSH terms: Plants/microbiology
  6. Ghanbarzadeh Z, Mohagheghzadeh A, Hemmati S
    Probiotics Antimicrob Proteins, 2024 Dec;16(6):2269-2304.
    PMID: 39225894 DOI: 10.1007/s12602-024-10354-9
    Antimicrobial peptides (AMPs) are the most favorable alternatives in overcoming multidrug resistance, alone or synergistically with conventional antibiotics. Plant-derived AMPs, as cysteine-rich peptides, widely compensate the pharmacokinetic drawbacks of peptide therapeutics. Compared to the putative genes encrypted in the genome, AMPs that are produced under stress are active forms with the ability to combat resistant microbial species. Within this study, plant-derived AMPs, namely, defensins, nodule-specific cysteine-rich peptides, snakins, lipid transfer proteins, hevein-like proteins, α-hairpinins, and aracins, expressed under biotic and abiotic stresses, are classified. We could observe that while α-hairpinins and snakins display a helix-turn-helix structure, conserved motif patterns such as β1αβ2β3 and β1β2β3 exist in plant defensins and hevein-like proteins, respectively. According to the co-expression data, several plant AMPs are expressed together to trigger synergistic effects with membrane disruption mechanisms such as toroidal pore, barrel-stave, and carpet models. The application of AMPs as an eco-friendly strategy in maintaining agricultural productivity through the development of transgenes and bio-pesticides is discussed. These AMPs can be consumed in packaging material, wound-dressing products, coating catheters, implants, and allergology. AMPs with cell-penetrating properties are verified for the clearance of intracellular pathogens. Finally, the dominant pharmacological activities of bioactive peptides derived from the gastrointestinal digestion of plant AMPs, namely, inhibitors of renin and angiotensin-converting enzymes, dipeptidyl peptidase IV and α-glucosidase inhibitors, antioxidants, anti-inflammatory, immunomodulating, and hypolipidemic peptides, are analyzed. Conclusively, as phytopathogens and human pathogens can be affected by plant-derived AMPs, they provide a bright perspective in agriculture, breeding, food, cosmetics, and pharmaceutical industries, translated as farm to bedside.
    Matched MeSH terms: Plants/chemistry
  7. Gerszberg A
    Planta, 2018 Nov;248(5):1037-1048.
    PMID: 30066219 DOI: 10.1007/s00425-018-2961-3
    The main goal of this publication is an overview of the biotechnological achievements concerning in vitro cultures and transformation of Brassica oleracea var. capitata. Faced with the requirements of the global food market, intensified work on the genetic transformation of economically important plants is carried out in laboratories around the world. The development of efficient procedures for their regeneration and transformation could be a good solution for obtaining, in a shorter time than by traditional methods, plants with desirable traits. Furthermore, conventional breeding methods are insufficient for crop genetic improvement not only because of being time-consuming but also because they are severely limited by sexual incompatibility barriers. This problem has been overcome by genetic engineering, which seems to be a very good technique for cabbage improvement. Despite the huge progress that has been made in the field of plant regeneration and transformation methods, up to now, no routine transformation procedure has been developed in the case of cabbage. This problem stems from the fact that the efficiency of cabbage transformation is closely related to the genotype and some varieties are recalcitrant to transformation. It is obvious that it is not possible to establish one universal regeneration and transformation protocol for all varieties of cabbage. Therefore, it seems fully justified to develop the above-mentioned procedures for individual economically important cultivars. Despite the obstacles of cabbage transformation in laboratories of many countries, especially those where this vegetable is extremely popular (e.g., China, India, Korea, Malaysia, Pakistan), such attempts are made. This article reviews the achievements in the field of tissue culture and cabbage transformation from the last two decades.
    Matched MeSH terms: Plants, Genetically Modified/genetics*; Plants, Genetically Modified/growth & development
  8. Gururaj AK, Khare CB
    Med J Malaysia, 1987 Mar;42(1):68-9.
    PMID: 3431506
    An unusual case of accidental poisoning with Dhatura seeds {sp. Datura stramonium; Syn: Thorn apple) is reported. Its clinical features are essentially due to its peripheral anticholinergic actions and are briefly discussed.
    Matched MeSH terms: Plants, Medicinal*; Plants, Toxic*
  9. Alara OR, Abdurahman NH, Ukaegbu CI
    Curr Res Food Sci, 2021;4:200-214.
    PMID: 33899007 DOI: 10.1016/j.crfs.2021.03.011
    Phenolic compounds are parts of secondary metabolites mostly found in plant species with enormous structural diversities. They can exist as glycosides or aglycones; matrix or free-bound compounds; and comprising mostly polymerized or monomer structures. Additionally, these compounds are not universally dispensed within plants with varied stability. This has contributed to challenging extraction processes; implying that employing a single step or inappropriate extraction technique might change the recovery of phenolic components from the plant samples. Hence, it is important to select an appropriate extraction method so as to recover the targeted phenolic compounds. This is will helps to recover substantial yields from the sample matrix. Therefore, this review mainly focuses on the phenolic compounds and several methods of extraction that are used to obtaining them from plant materials. These extraction methods includes both conventional and unconventional techniques.
    Matched MeSH terms: Plants
  10. Ahmed, Ibrahim Galadima, Abdurrahman Abubakar, Sulaiman Mohammed, Abdulkarim Ali Deba
    MyJurnal
    Phytoremediation is considered as a cost-effective and environmentally friendly
    technique for decontaminating environments that have been contaminated with
    heavy metal ions. The technique describes the use of plants and their concomitant
    microbes to mitigate environmental contaminations. However, conventional
    remediation techniques like chemical, thermal and physical treatment methods are
    too costly, and may end of causing more contamination to the environment.
    Phytoremediation practice provides a major information on the utilization of plants
    and their materials in decontaminating polluted environments. Heavy metals and
    other organic contaminants are among the most precarious substances released into
    the environment which have an eminent level of toxicity and sturdiness of both
    aquatic and terrestrial organisms. The review aimed at providing a broad
    understanding of utilizing various plants and their materials in decontaminating
    polluted environments with heavy metals and other organic contaminants. It also
    provided the general methods used in treating the aforementioned contaminants in
    an environment. The review further discussed the classes of phytoremediation like
    phytoextraction, phytovolatilisation, phytostabilization, phytotransformation,
    phytodegradation and phytofiltration. The generalized advantages and disadvantages
    of phytoremediation were ultimately highlighted.
    Matched MeSH terms: Plants
  11. Zhen L, Zhang ZW, Wang YJ, Wang PC, Xu YR, Zhou ZX
    Sains Malaysiana, 2012;41:1495-1501.
    Relationship between understory plant diversity and anthropogenic disturbances in urban forests of Wuhan City, Central China, was analyzed by diversity analysis and detrended canonical correspondence analysis (DCCA). The results showed that: understory species diversity was higher in suburban area than in urban area. From forest center to edge, species diversity of Luojia hill, Shizi hill and Maan hill forests gradually increased, however, that of Hong hill gradually decreased. Anthropogenic disturbances gradient resulted from visitors flowrate, shrub coverage, aspect and adjacent land types had significant effects on species diversity of shrub and herb layers in urban forests. High anthropogenic disturbances might increase similar non-native herb species in urban area and low disturbances might promote co-existence of wood species in suburban area. Further analysis on types of anthropogenic disturbances and plant functional groups in urban-suburban gradient should be taken into a consideration.
    Matched MeSH terms: Plants
  12. Shukurov E, Nabiyev M, ALI-ZADE V
    Sains Malaysiana, 2013;42:1467-1471.
    The purpose of the investigation was to study the early spring plant diversity distributed in different vegetation types and their life forms, in relation to different altitudes. The investigation was carried out in accordance with itinerary method beginning from the shoreline up to the mountain. The results showed that 100% of the totally collected plants from the desert vegetation were therophytes; 100% from steppe vegetation were geophytes; 50 from forest were geophytes and the other 50% were hemicryptophytes. It is concluded that the life forms of early spring plants change depending on the altitude corresponding to changes in the air temperature as well as climatic and edaphic factors.
    Matched MeSH terms: Plants
  13. Wu HY, Lim SJ, Wan Aida Wan Mustapha, Mohamad Yusof Maskat, Mamot Said
    Sains Malaysiana, 2014;43(9):1345-1354.
    This study was carried out to identify the pigment extracted from Malaysian brown seaweed, Sargassum binderi and its stability in various conditions. Pigments were extracted using methanol:chloroform:water (4:2:1, v/v/v), which is part of fucoidan extraction process, where the pigments were waste. Carotenoid and chlorophyll were found in the extract using UV-vis spectrophotometer (420 and 672 nm, respectively). Fucoxanthin was identified as the carotenoid present using HPLC, while its functional groups and structure were determined using FTIR and 1H NMR, respectively. The fucoxanthin-rich extract stability was tested on different pH (pH1-13), light exposure (dark and light) and storage temperature (4ºC, 25ºC and 50ºC). The stability tests showed that it was most stable at pH5-7, stored in dark condition and at the storage temperature of 4ºC and 25ºC. The fucoxanthin-rich extract from Sargassum binderi has potential to be applied as bioingredient and functional food as it is stable in normal storage conditions.
    Matched MeSH terms: Plants
  14. Shokravi H, Shokravi Z, Heidarrezaei M, Ong HC, Rahimian Koloor SS, Petrů M, et al.
    Chemosphere, 2021 Dec;285:131535.
    PMID: 34329137 DOI: 10.1016/j.chemosphere.2021.131535
    Genetic engineering applications in the field of biofuel are rapidly expanding due to their potential to boost biomass productivity while lowering its cost and enhancing its quality. Recently, fourth-generation biofuel (FGB), which is biofuel obtained from genetically modified (GM) algae biomass, has gained considerable attention from academic and industrial communities. However, replacing fossil resources with FGB is still beset with many challenges. Most notably, technical aspects of genetic modification operations need to be more fully articulated and elaborated. However, relatively little attention has been paid to GM algal biomass. There is a limited number of reviews on the progress and challenges faced in the algal genetics of FGB. Therefore, the present review aims to fill this gap in the literature by recapitulating the findings of recent studies and achievements on safe and efficient genetic manipulation in the production of FGB. Then, the essential issues and parameters related to genome editing in algal strains are highlighted. Finally, the main challenges to FGB pertaining to the diffusion risk and regulatory frameworks are addressed. This review concluded that the technical and biosafety aspects of FGB, as well as the complexity and diversity of the related regulations, legitimacy concerns, and health and environmental risks, are among the most important challenges that require a strong commitment at the national/international levels to reach a global consensus.
    Matched MeSH terms: Plants
  15. Sabandar CW, Ahmat N, Jaafar FM, Sahidin I
    Phytochemistry, 2013 Jan;85:7-29.
    PMID: 23153517 DOI: 10.1016/j.phytochem.2012.10.009
    The genus Jatropha (Euphorbiaceae) comprises of about 170 species of woody trees, shrubs, subshrubs or herbs in the seasonally dry tropics of the Old and the New World. They are used in medicinal folklore to cure various diseases of 80% of the human population in Africa, Asia and Latin America. Species from this genus have been popular to cure stomachache, toothache, swelling, inflammation, leprosy, dysentery, dyscrasia, vertigo, anemia, diabetis, as well as to treat HIV and tumor, opthalmia, ringworm, ulcers, malaria, skin diseases, bronchitis, asthma and as an aphrodisiac. They are also employed as ornamental plants and energy crops. Cyclic peptides alkaloids, diterpenes and miscellaneous compounds have been reported from this genus. Extracts and pure compounds of plants from this genus are reported for cytotoxicity, tumor-promoting, antimicrobial, antiprotozoal, anticoagulant, immunomodulating, anti-inflammatory, antioxidant, protoscolicidal, insecticidal, molluscicidal, inhibition AChE and toxicity activities.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  16. Hasanpourghadi M, Looi CY, Pandurangan AK, Sethi G, Wong WF, Mustafa MR
    Curr Drug Targets, 2017;18(9):1086-1094.
    PMID: 27033190 DOI: 10.2174/1389450117666160401124842
    Phytometabolites are functional elements derived from plants and most of them exhibit therapeutic characteristics such as anti-cancer, anti-inflammatory and anti-oxidant effects. Phytometabolites exert their anti-cancer effect by targeting multiple signaling pathways. One of the remarkable phenomena targeted by phytometabolites is the Warburg effect. The Warburg effect describes the observation that cancer cells exhibit an increased rate of glycolysis and aberrant redox activity compared to normal cells. This phenomenon promotes further cancer development and progression. Recent observations revealed that some phytometabolites could target metabolic-related enzymes (e.g. Hexokinase, Pyruvate kinase M2, HIF-1) in cancer cells, with little or no harm to normal cells. Since hyper-proliferation of cancer cells is fueled by higher cellular metabolism, phytometabolites targeting these metabolic pathways can create synergistic crosstalk with induced apoptotic pathways and sensitize cancer cells to chemotherapeutic agents. In this review, we discuss phytometabolites that target the Warburg effect and the underlying molecular mechanism that leads to tumor growth suppression.
    Matched MeSH terms: Plants/metabolism*
  17. Abdullah MA, Ariff AB, Marziah M, Ali AM, Lajis NH
    J Agric Food Chem, 2000 Sep;48(9):4432-8.
    PMID: 10995375
    The effects of medium strategy, number of impellers, aeration mode, and mode of operation on Morinda elliptica cell suspension cultures in a stirred-tank bioreactor are described. A lower number of impellers and continuous aeration contributed toward high cell growth rate, whereas a higher number of impellers reduced cell growth rate, although not anthraquinone yield. The semicontinuous mode could indirectly imitate the larger scale version of production medium strategy and improved anthraquinone production even with 0. 012% (v/v) antifoam addition. Production medium promoted both growth (maximum dry cell weight of 24.6 g/L) and anthraquinone formation (maximum content of 19.5 mg/g of dry cell weight), without any necessity for antifoam addition. Cultures in production medium or with higher growth rate and anthraquinone production were less acidic than cultures in growth medium or with lower growth rate and anthraquinone production. Using the best operating variables, growth of M. elliptica cells (24.6 g/L) and anthraquinone yield (0.25 g/L) were 45% and 140%, respectively, lower than those using a shake flask culture after 12 days of cultivation.
    Matched MeSH terms: Plants/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links