Displaying publications 21 - 40 of 53 in total

Abstract:
Sort:
  1. Kodaira S, Konishi T, Kobayashi A, Maeda T, Ahmad TA, Yang G, et al.
    J Radiat Res, 2015 Mar;56(2):360-5.
    PMID: 25324538 DOI: 10.1093/jrr/rru091
    The geometric locations of ion traversals in mammalian cells constitute important information in the study of heavy ion-induced biological effect. Single ion traversal through a cellular nucleus produces complex and massive DNA damage at a nanometer level, leading to cell inactivation, mutations and transformation. We present a novel approach that uses a fluorescent nuclear track detector (FNTD) for the simultaneous detection of the geometrical images of ion traversals and DNA damage in single cells using confocal microscopy. HT1080 or HT1080-53BP1-GFP cells were cultured on the surface of a FNTD and exposed to 5.1-MeV/n neon ions. The positions of the ion traversals were obtained as fluorescent images of a FNTD. Localized DNA damage in cells was identified as fluorescent spots of γ-H2AX or 53BP1-GFP. These track images and images of damaged DNA were obtained in a short time using a confocal laser scanning microscope. The geometrical distribution of DNA damage indicated by fluorescent γ-H2AX spots in fixed cells or fluorescent 53BP1-GFP spots in living cells was found to correlate well with the distribution of the ion traversals. This method will be useful for evaluating the number of ion hits on individual cells, not only for micro-beam but also for random-beam experiments.
    Matched MeSH terms: Microscopy, Confocal/instrumentation*
  2. Elnager A, Hassan R, Idris Z, Mustafa Z, Wan-Arfah N, Sulaiman SA, et al.
    Biomed Res Int, 2015;2015:627471.
    PMID: 25664321 DOI: 10.1155/2015/627471
    Background. Caffeic acid phenethyl ester (CAPE) has been reported to possess time-dependent fibrinolytic activity by in vitro assay. This study is aimed at investigating fibrinolytic dose-dependent activity of CAPE using in vitro assays. Methods. Standardized human whole blood (WB) clots were incubated in either blank controls or different concentrations of CAPE (3.75, 7.50, 15.00, 22.50, and 30.00 mM). After 3 hours, D-dimer (DD) levels and WB clot weights were measured for each concentration. Thromboelastography (TEG) parameters were recorded following CAPE incubation, and fibrin morphology was examined under a confocal microscope. Results. Overall, mean DD (μg/mL) levels were significantly different across samples incubated with different CAPE concentrations, and the median pre- and postincubation WB clot weights (grams) were significantly decreased for each CAPE concentration. Fibrin removal was observed microscopically and indicated dose-dependent effects. Based on the TEG test, the Ly30 fibrinolytic parameter was significantly different between samples incubated with two different CAPE concentrations (15.0 and 22.50 mM). The 50% effective dose (ED50) of CAPE (based on DD) was 1.99 mg/mL. Conclusions. This study suggests that CAPE possesses fibrinolytic activity following in vitro incubation and that it has dose-dependent activities. Therefore, further investigation into CAPE as a potential alternative thrombolytic agent should be conducted.
    Matched MeSH terms: Microscopy, Confocal
  3. Moloney G, Chan UT, Hamilton A, Zahidin AM, Grigg JR, Devasahayam RN
    Can J Ophthalmol, 2015 Feb;50(1):68-72.
    PMID: 25677286 DOI: 10.1016/j.jcjo.2014.10.014
    To describe 2 cases of spontaneous corneal clearing after Descemetorhexis: 1 after iatrogenic trauma (Case 1) and 1 as an intentional surgical intervention for Fuchs endothelial dystrophy (Case 2).
    Matched MeSH terms: Microscopy, Confocal
  4. Vakhshiteh F, Allaudin ZN, Mohd Lila MA, Hani H
    Xenotransplantation, 2013 02 14;20(2):82-8.
    PMID: 23406308 DOI: 10.1111/xen.12023
    BACKGROUND: The successful isolation, purification, and culture of caprine islets has recently been reported. The present study shows arange of size distribution in caprine islet diameter from 50 to 250 μm, in which 80% of the total islet yield was comprised of small islets.

    METHODS: Caprine islets were isolated and purified. Islets were handpicked and the diameter of the islets was recorded using light microscopy. Viablility of the islets was analyzed by confocal microscopy. Insulin secretion assay was carried out and analyzed by ELISA.

    RESULTS: When tested at 48 h after isolation, these small islets were 29.3% more viable compared to the large-sized islets. Large islets showed a high ratio (P 

    Matched MeSH terms: Microscopy, Confocal
  5. Chiam CW, Sam IC, Chan YF, Wong KT, Ong KC
    Methods Mol Biol, 2016;1426:235-40.
    PMID: 27233276 DOI: 10.1007/978-1-4939-3618-2_21
    Immunohistochemistry is a histological technique that allows detection of one or more proteins of interest within a cell using specific antibody binding, followed by microscopic visualization of a chromogenic substrate catalyzed by peroxidase and/or alkaline phosphatase. Here, we describe a method to localize Chikungunya virus (CHIKV) antigens in formalin-fixed and paraffin-embedded infected mouse brain.
    Matched MeSH terms: Microscopy, Confocal
  6. Leo BF, Fearn S, Gonzalez-Cater D, Theodorou I, Ruenraroengsak P, Goode AE, et al.
    Anal Chem, 2019 Sep 03;91(17):11098-11107.
    PMID: 31310103 DOI: 10.1021/acs.analchem.9b01704
    There are no methods sensitive enough to detect enzymes within cells, without the use of analyte labeling. Here we show that it is possible to detect protein ion signals of three different H2S-synthesizing enzymes inside microglia after pretreatment with silver nanowires (AgNW) using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Protein fragment ions, including the fragment of amino acid (C4H8N+ = 70 amu), fragments of the sulfur-producing cystathionine-containing enzymes, and the Ag+ ion signal could be detected without the use of any labels; the cells were mapped using the C4H8N+ amino acid fragment. Scanning electron microscopy imaging and energy-dispersive X-ray chemical analysis showed that the AgNWs were inside the same cells imaged by TOF-SIMS and transformed chemically into crystalline Ag2S within cells in which the sulfur-producing proteins were detected. The presence of these sulfur-producing cystathionine-containing enzymes within the cells was confirmed by Western blots and confocal microscopy images of fluorescently labeled antibodies against the sulfur-producing enzymes. Label-free TOF-SIMS is very promising for the label-free identification of H2S-contributing enzymes and their cellular localization in biological systems. The technique could in the future be used to identify which of these enzymes are most contributory.
    Matched MeSH terms: Microscopy, Confocal
  7. Al-Nabulsi M, Daud A, Yiu C, Omar H, Sauro S, Fawzy A, et al.
    Materials (Basel), 2019 Aug 07;12(16).
    PMID: 31394743 DOI: 10.3390/ma12162504
    Objective: To evaluate the effect of a new application method of bulk-fill flowable composite resin material on bond-strength, nanoleakage, and mechanical properties of dentine bonding agents.

    MATERIALS AND METHODS: Sound extracted human molars were randomly divided into: manufacturer's instructions (MI), manual blend 2 mm (MB2), and manual blend 4 mm (MB4). Occlusal enamel was removed and flattened, dentin surfaces were bonded by Prime & Bond universal (Dentsply and Optibond FL, Kerr). For the MI group, adhesives were applied following the manufacturer's instructions then light-cured. For MB groups, SDR flow+ bulk-fill flowable composite resin was applied in 2- or 4-mm increment then manually rubbed by a micro brush for 15 s with uncured dentine bonding agents and the mixture was light-cured. Composite buildup was fabricated incrementally using Ceram.X One, Dentsply nanohybrid composite resin restorative material. After 24-h water storage, the teeth were sectioned to obtain beams of about 0.8 mm2 for 24-h and thermocycled micro-tensile bond strength at 0.5 mm/min crosshead speed. Degree of conversion was evaluated with micro-Raman spectroscopy. Contraction gaps at 24 h after polymerization were evaluated and atomic force microscopy (AFM) nano-indentation processes were undertaken for measuring the hardness across the interface. Depth of resin penetration was studied using a scanning electron microscope (SEM). Bond strength data was expressed using two-way ANOVA followed by Tukey's test. Nanoindentation hardness was separately analyzed using one-way ANOVA.

    RESULTS: Factors "storage F = 6.3" and "application F = 30.11" significantly affected the bond strength to dentine. For Optibond FL, no significant difference in nanoleakage was found in MI/MB4 groups between baseline and aged specimens; significant difference in nanoleakage score was observed in MB2 groups. Confocal microscopy analysis showed MB2 Optibond FL and Prime & Bond universal specimens diffusing within the dentine. Contraction gap was significantly reduced in MB2 specimens in both adhesive systems. Degree of conversion (DC) of the MB2 specimens were numerically more compared to MS1 in both adhesive systems.

    CONCLUSION: Present study suggests that the new co-blend technique might have a positive effect on bond strengths of etch-and-rinse adhesives to dentine.

    Matched MeSH terms: Microscopy, Confocal
  8. Parolia A, Kumar H, Ramamurthy S, Davamani F, Pau A
    BMC Oral Health, 2020 11 25;20(1):339.
    PMID: 33238961 DOI: 10.1186/s12903-020-01330-0
    BACKGROUND: The successful outcome of endodontic treatment depends on controlling the intra-radicular microbial biofilm by effective instrumentation and disinfection using various irrigants and intracanal medicaments. Instrumentation alone cannot effectively debride the root canals specially due to the complex morphology of the root canal system. A number of antibiotics and surfactants are being widely used in the treatment of biofilms however, the current trend is towards identification of natural products in disinfection. The aim of the study was to determine the antibacterial effect of chitosan-propolis nanoparticle (CPN) as an intracanal medicament against Enterococcus faecalis biofilm in root canal.

    METHODS: 240 extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into eight groups (n = 30) according to the intracanal medicament placed: group I: saline, group II: chitosan, group III: propolis100 µg/ml (P100), group IV: propolis 250 µg/ml (P250), group V: chitosan-propolis nanoparticle 100 µg/ml (CPN100), group VI: chitosan-propolis nanoparticle 250 µg/ml (CPN250), group VII: calcium hydroxide(CH) and group VIII: 2% chlorhexidine (CHX) gel. Dentine shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of day one, three and seven. The non-parametric Kruskal Wallis and Mann-Whitney tests were used to compare the differences in reduction of CFUs between all groups and probability values of p 

    Matched MeSH terms: Microscopy, Confocal
  9. Vijayanathan Y, Lim FT, Lim SM, Long CM, Tan MP, Majeed ABA, et al.
    Neurotox Res, 2017 Oct;32(3):496-508.
    PMID: 28707266 DOI: 10.1007/s12640-017-9778-x
    Conventional mammalian models of neurodegeneration are often limited by futile axonogenesis with minimal functional recuperation of severed neurons. The emergence of zebrafish, a non-mammalian model with excellent neuroregenerative properties, may address these limitations. This study aimed to establish an adult zebrafish-based, neurotoxin-induced Parkinson's disease (PD) model and subsequently validate the regenerative capability of dopaminergic neurons (DpN). The DpN of adult male zebrafish (Danio rerio) were lesioned by microinjecting 6-hydroxydopamine (6-OHDA) neurotoxin (6.25, 12.5, 18.75, 25, 37.5, 50 and 100 mg/kg) into the ventral diencephalon (Dn). This was facilitated by an optimised protocol that utilised 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanineperchlorate (DiI) dye to precisely identify the injection site. Immunostaining was utilised to identify the number of tyrosine hydroxylase immunoreactive (TH-ir) DpN in brain regions of interest (i.e. olfactory bulb, telencephalon, preoptic area, posterior tuberculum and hypothalamus). Open tank video recordings were performed for locomotor studies. The Dn was accessed by setting the injection angle of the microinjection capillary to 60° and injection depth to 1200 μm (from the exposed brain surface). 6-OHDA (25 mg/kg) successfully ablated >85% of the Dn DpN (preoptic area, posterior tuberculum and hypothalamus) whilst maintaining a 100% survival. Locomotor analysis of 5-min recordings revealed that 6-OHDA-lesioned adult zebrafish were significantly (p 
    Matched MeSH terms: Microscopy, Confocal
  10. Dasiman R, Rahman NS, Othman S, Mustafa MF, Yusoff NJ, Jusoff WH, et al.
    Med Sci Monit Basic Res, 2013 Oct 04;19:258-66.
    PMID: 24092420 DOI: 10.12659/MSMBR.884019
    BACKGROUND: This study aimed to investigate the effects of vitrification and slow freezing on actin, tubulin, and nuclei of in vivo preimplantation murine embryos at various developmental stages using a Confocal Laser Scanning Microscope (CLSM).

    MATERIAL/METHODS: Fifty female mice, aged 4-6 weeks, were used in this study. Animals were superovulated, cohabitated overnight, and sacrificed. Fallopian tubes were excised and flushed. Embryos at the 2-cell stage were collected and cultured to obtain 4- and 8-cell stages before being cryopreserved using vitrification and slow freezing. Fixed embryos were stained with fluorescence-labelled antibodies against actin and tubulin, as well as DAPI for staining the nucleus. Labelled embryos were scanned using CLSM and images were analyzed with Q-Win software V3.

    RESULTS: The fluorescence intensity of both vitrified and slow-frozen embryos was significantly lower for tubulin, actin, and nucleus as compared to non-cryopreserved embryos (p<0.001). Intensities of tubulin, actin, and nucleus in each stage were also decreased in vitrified and slow-frozen groups as compared to non-cryopreserved embryos.

    CONCLUSIONS: Cryopreservation of mouse embryos by slow freezing had a more detrimental effect on the actin, tubulin, and nucleus structure of the embryos compared to vitrification. Vitrification is therefore superior to slow freezing in terms of embryonic cryotolerance.

    Matched MeSH terms: Microscopy, Confocal
  11. Purwasena IA, Fitri DK, Putri DM, Endro H, Zakaria MN
    J Dent, 2024 May;144:104961.
    PMID: 38527516 DOI: 10.1016/j.jdent.2024.104961
    OBJECTIVES: Lipopeptide Biosurfactant (LB) is a bacteria derived compound able to reduce surface tension between water and hydrophobic substances and exhibit antimicrobial and anti-biofilm properties. This study aimed to investigate the antimicrobial and anti-biofilm effect of a Lipopeptide Biosurfactant (LB) on Enterococcus faecalis, and its potential use in root canal treatment, either as a standalone irrigation solution or in conjunction with sodium hypochlorite (NaOCl).

    METHODS: LB was extracted from Bacillus clausii isolate and the dry extract was diluted in deionized water. The antimicrobial effect of LB against planktonic E. faecalis was evaluated by determining the Minimal Inhibitory Concentration (MIC50). The anti-biofilm effect was evaluated by Minimal Biofilm Inhibitory Concentration (MBIC50) and Minimal Biofilm Eradication Concentration (MBEC50) assays on biofilm grown on dentin specimen surface. To evaluate the effectiveness of LB as a single irrigation solution and as a pre-irrigation prior to NaOCl, live and dead bacterial cells were quantified using Confocal Laser Scanning Microscopy (CLSM), and cell biomass was assessed.

    RESULTS: LB exhibited an MIC50 and MBIC50 of 100 ppm, with an MBEC50 of 1000 ppm, resulting in 52.94 % biofilm inhibition and 60.95 % biofilm eradication on dentin specimens. The effectiveness was concentration-dependent, at 500 ppm, LB demonstrated comparable antimicrobial efficacy to 2.5 % NaOCl. Pre-irrigation with LB resulted in lower biofilm biomass compared to NaOCl alone.

    CONCLUSION: Pre-irrigation with LB enhanced the antimicrobial effect when followed by NaOCl irrigation. Consequently, LB shows promise as both a standalone root canal irrigation solution and as an adjunct to NaOCl in root canal treatment.

    CLINICAL SIGNIFICANCE: The study highlights the potential of Lipopeptide Biosurfactant (LB) as an environmentally friendly irrigation solution for root canal treatment, demonstrating potent antimicrobial and anti-biofilm properties against Enterococcus faecalis. LB exhibits concentration-dependent efficacy comparable to 2.5 % NaOCl and can be used as a standalone irrigation solution or in conjunction with NaOCl.

    Matched MeSH terms: Microscopy, Confocal
  12. Daood U, Ilyas MS, Ashraf M, Akbar M, Asif A, Khan AS, et al.
    J Oral Maxillofac Surg, 2024 Sep;82(9):1147-1162.
    PMID: 38830601 DOI: 10.1016/j.joms.2024.05.004
    BACKGROUND: Treated or coated sutures promise to prevent contamination of wounds.

    PURPOSE: The purpose of the study was to coat surgical sutures with a new quaternary ammonium silane (QAS) antimicrobial compound at two different application temperatures and then to evaluate the resulting structural, physical, mechanical, and biological properties.

    STUDY DESIGN, SETTING, SAMPLE: In vitro and in vivo studies were conducted using male albino Wistar rats approved by the Joint Ethical Committee of IMU and Postgraduate Medical Institute, Lahore. Only suture samples, coated uniformly with verified presence of the compound and of adequate length were used. Samples which were not coated uniformly and with inadequate length or damaged were excluded.

    PREDICTOR VARIABLE: Predictor variables were sutures with and without QAS coatings and different temperatures. Sutures were coated with QAS at 0.5 and 1.0% wt/vol using the dip coating technique and sutures with and without QAS coating were tested at 25 and 40 °C temperatures.

    MAIN OUTCOME VARIABLE(S): Outcome variables of structural and physico-mechanical properties of QAS-coated and non-coated sutures were measured using Fourier transform infrared spectroscopy (for structural changes), confocal laser and scanning electron (for diameter changes), and tensile strength/modulus (for mechanical testing). Biologic outcome variables were tested (bacterial viability); macrophage cultures from Wistar rats were tested (M1/M2 polarization detecting IL-6 and IL-10). Macrophage cells were analyzed with CD80+ (M1) and CD163+ (M2). Chemotaxis index was calculated as a ratio of quantitative fluorescence of cells.

    COVARIATES: Not applicable.

    ANALYSES: Ordinal data among groups were compared using the Wilcoxon Mann-Whitney U test along with the comparison of histological analysis using the Wilcoxon Sign-rank test (P 

    Matched MeSH terms: Microscopy, Confocal
  13. Hoque ME, San WY, Wei F, Li S, Huang MH, Vert M, et al.
    Tissue Eng Part A, 2009 Oct;15(10):3013-24.
    PMID: 19331580 DOI: 10.1089/ten.TEA.2008.0355
    Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(epsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.
    Matched MeSH terms: Microscopy, Confocal
  14. Bastion ML, Mohamad MH
    Eye Contact Lens, 2006 Sep;32(5):223-7.
    PMID: 16974154
    PURPOSE: To investigate factors associated with the presence of microdot deposits or white dots (WDs) on confocal microscopy in regular soft contact lens (SCL) users.
    METHODS: This cross-sectional observational study investigated changes in the cornea in regular SCL users by using an in vivo slit-scanning microscope (ConfoScan 3). Images were analyzed by noting the presence of highly reflective WDs. Factors associated with WDs were analyzed by using an unpaired t test with Welch correction.
    RESULTS: There were 56 SCL wearers. Of these, a group of 10 had WDs (GWD) in various parts of the cornea. They had worn SCLs for 7 to 20 years and had a mean total duration of SCL wear of 13.6 +/- 4.4 years. Their mean age was 35.8 +/- 10.4 years. They were compared with a group of SCL wearers with no evidence of WDs (GNWD). The mean age of GNWD was 29.1 +/- 7.2 years, with a mean duration of SCL use of 8.17 +/- 5.1 years. The two groups were compared in terms of age, total duration of SCL wear (years), duration in hours per week, SCL water content (%), mean cell density in the endothelium and stroma, endothelial cell coefficient of cell size variation, and percentage of hexagonal cells. Only the duration of SCL wear was significantly associated with the presence of WDs (p=0.0042). WDs were most commonly found in the posterior stroma (n = 9). Two patients had WDs in the epithelium, with one of these having WDs in the endothelium. All patients except one with a hazy left eye scan had WDs bilaterally and symmetrically.
    CONCLUSIONS: Confocal microscopy allows visualization of WDs in the corneas of Asian regular SCL users. Patients with WDs have a longer history of SCL wear. WDs may represent an early stage of corneal disease or degeneration associated with alterations in cell behavior.
    Matched MeSH terms: Microscopy, Confocal
  15. Krishnamurithy G, Murali MR, Hamdi M, Abbas AA, Raghavendran HB, Kamarul T
    Regen Med, 2015;10(5):579-90.
    PMID: 26237702 DOI: 10.2217/rme.15.27
    To compare the effect of bovine bone derived porous hydroxyapatite (BDHA) scaffold on proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hMSCs) compared with commercial hydroxyapatite (CHA) scaffold.
    Matched MeSH terms: Microscopy, Confocal
  16. Parolia A, Kumar H, Ramamurthy S, Madheswaran T, Davamani F, Pichika MR, et al.
    Molecules, 2021 Jan 30;26(3).
    PMID: 33573147 DOI: 10.3390/molecules26030715
    To determine the antibacterial effect of propolis nanoparticles (PNs) as an endodontic irrigant against Enterococcus faecalis biofilm inside the endodontic root canal system. Two-hundred-ten extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into seven groups, with 30 dentinal blocks in each group including: group I-saline; group II-propolis 100 µg/mL; group III-propolis 300 µg/mL; group IV-propolis nanoparticle 100 µg/mL; group V-propolis nanoparticle 300µg/mL; group VI-6% sodium hypochlorite; group VII-2% chlorhexidine. Dentin shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of one, five, and ten minutes. The non-parametric Kruskal-Wallis and Mann-Whitney tests were used to compare the differences in reduction in CFUs between all groups, and probability values of p < 0.05 were set as the reference for statistically significant results. The antibacterial effect of PNs as an endodontic irrigant was also assessed against E. faecalis isolates from patients with failed root canal treatment. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were also performed after exposure to PNs. A Raman spectroscope, equipped with a Leica microscope and lenses with curve-fitting Raman software, was used for analysis. The molecular interactions between bioactive compounds of propolis (Pinocembrin, Kaempferol, and Quercetin) and the proteins Sortase A and β-galactosidase were also understood by computational molecular docking studies. PN300 was significantly more effective in reducing CFUs compared to all other groups (p < 0.05) except 6% NaOCl and 2% CHX (p > 0.05) at all time intervals and both depths. At five minutes, 6% NaOCl and 2% CHX were the most effective in reducing CFUs (p < 0.05). However, no significant difference was found between PN300, 6% NaOCl, and 2% CHX at 10 min (p > 0.05). SEM images also showed the maximum reduction in E. faecalis with PN300, 6% NaOCl, and 2% CHX at five and ten minutes. CLSM images showed the number of dead cells in dentin were highest with PN300 compared to PN100 and saline. There was a reduction in the 484 cm-1 band and an increase in the 870 cm-1 band in the PN300 group. The detailed observations of the docking poses of bioactive compounds and their interactions with key residues of the binding site in all the three docking protocols revealed that the interactions were consistent with reasonable docking and IFD docking scores. PN300 was equally as effective as 6% NaOCl and 2% CHX in reducing the E. faecalis biofilms.
    Matched MeSH terms: Microscopy, Confocal
  17. Mutha NVR, Mohammed WK, Krasnogor N, Tan GYA, Choo SW, Jakubovics NS
    Mol Oral Microbiol, 2018 12;33(6):450-464.
    PMID: 30329223 DOI: 10.1111/omi.12248
    Cell-cell interactions between genetically distinct bacteria, known as coaggregation, are important for the formation of mixed-species biofilms such as dental plaque. Interactions lead to gene regulation in the partner organisms that may be critical for adaptation and survival in mixed-species biofilms. Here, gene regulation responses to coaggregation between Streptococcus gordonii and Fusobacterium nucleatum were studied using dual RNA-Seq. Initially, S. gordonii was shown to coaggregate strongly with F. nucleatum in buffer or human saliva. Using confocal laser scanning microscopy and transmission electron microscopy, cells of different species were shown to be evenly distributed throughout the coaggregate and were closely associated with one another. This distribution was confirmed by serial block face sectioning scanning electron microscopy, which provided high resolution three-dimensional images of coaggregates. Cell-cell sensing responses were analysed 30 minutes after inducing coaggregation in human saliva. By comparison with monocultures, 16 genes were regulated following coaggregation in F. nucleatum whereas 119 genes were regulated in S. gordonii. In both species, genes involved in amino acid and carbohydrate metabolism were strongly affected by coaggregation. In particular, one 8-gene operon in F. nucleatum encoding sialic acid uptake and catabolism was up-regulated 2- to 5-fold following coaggregation. In S. gordonii, a gene cluster encoding functions for phosphotransferase system-mediated uptake of lactose and galactose was down-regulated up to 3-fold in response to coaggregation. The genes identified in this study may play key roles in the development of mixed-species communities and represent potential targets for approaches to control dental plaque accumulation.
    Matched MeSH terms: Microscopy, Confocal
  18. Pourshahrestani S, Kadri NA, Zeimaran E, Gargiulo N, Samuel S, Naveen SV, et al.
    Biomed Mater, 2018 02 08;13(2):025020.
    PMID: 29148431 DOI: 10.1088/1748-605X/aa9b3e
    Mesoporous bioactive glass containing 1% Ga2O3 (1%Ga-MBG) is attractive for hemorrhage control because of its surface chemistry which can promote blood-clotting. The present study compares this proprietary inorganic coagulation accelerator with two commercial hemostats, CeloxTM (CX) and QuikClot Advanced Clotting Sponge PlusTM (ACS+). The results indicate that the number of adherent platelets were higher on the 1%Ga-MBG and CX surfaces than ACS+ whereas a greater contact activation was seen on 1%Ga-MBG and ACS+ surfaces than CX. 1%Ga-MBG not only resulted in larger platelet aggregates and more extensive platelet pseudopodia compared to CX and ACS+ but also significantly accelerated the intrinsic pathways of the clotting cascade. In vitro thrombin generation assays also showed that CX and ACS+ induced low levels of thrombin formation while 1%Ga-MBG had significantly higher values. 1%Ga-MBG formed a larger red blood cell aggregate than both CX and ACS+. Direct exposure of 1%Ga-MBG to fibroblast cells increased cell viability after 3 days relative to CX and ACS+, inferring excellent cytocompatibility. The results of this study promote 1%Ga-MBG as a promising hemostat compared to the commercially available products as it possesses essential factors required for coagulation activation.
    Matched MeSH terms: Microscopy, Confocal
  19. Toegel M, Azzam G, Lee EY, Knapp DJHF, Tan Y, Fa M, et al.
    Nat Commun, 2017 11 21;8(1):1663.
    PMID: 29162808 DOI: 10.1038/s41467-017-01592-3
    Binary expression systems have revolutionised genetic research by enabling delivery of loss-of-function and gain-of-function transgenes with precise spatial-temporal resolution in vivo. However, at present, each existing platform relies on a defined exogenous transcription activator capable of binding a unique recognition sequence. Consequently, none of these technologies alone can be used to simultaneously target different tissues or cell types in the same organism. Here, we report a modular system based on programmable transcription activator-like effector (TALE) proteins, which enables parallel expression of multiple transgenes in spatially distinct tissues in vivo. Using endogenous enhancers coupled to TALE drivers, we demonstrate multiplexed orthogonal activation of several transgenes carrying cognate variable activating sequences (VAS) in distinct neighbouring cell types of the Drosophila central nervous system. Since the number of combinatorial TALE-VAS pairs is virtually unlimited, this platform provides an experimental framework for highly complex genetic manipulation studies in vivo.
    Matched MeSH terms: Microscopy, Confocal
  20. Mamat-Noorhidayah, Yazawa K, Numata K, Norma-Rashid Y
    PLoS One, 2018;13(3):e0193147.
    PMID: 29513694 DOI: 10.1371/journal.pone.0193147
    Resilin functions as an elastic spring that demonstrates extraordinary extensibility and elasticity. Here we use combined techniques, laser scanning confocal microscopy (LSCM) and scanning electron microscopy (SEM) to illuminate the structure and study the function of wing flexibility in damselflies, focusing on the genus Rhinocypha. Morphological studies using LSCM and SEM revealed that resilin patches and cuticular spikes were widespread along the longitudinal veins on both dorsal and ventral wing surfaces. Nanoindentation was performed by using atomic force microscopy (AFM), where the wing samples were divided into three sections (membrane of the wing, mobile and immobile joints). The resulting topographic images revealed the presence of various sizes of nanostructures for all sample sections. The elasticity range values were: membrane (0.04 to 0.16 GPa), mobile joint (1.1 to 2.0 GPa) and immobile joint (1.8 to 6.0 GPa). The elastomeric and glycine-rich biopolymer, resilin was shown to be an important protein responsible for the elasticity and wing flexibility.
    Matched MeSH terms: Microscopy, Confocal
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links