Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Yadav, M.
    MyJurnal
    Human Herpesvirus-6 (HHV-6) infections are ubiquitous in human populations with an antibody prevalence of 30-85 percent in normal adults. The virus in vivo infects T-lympho-cytes, at various stages of differentiation and is cytopathic to host cell during productive infection. In culture the virus is pleiotropic for several established cell lines including T and B lymphocytes, macrophages and neural cells. Primary viral infection occurs mostly in early childhood. The saliva is the primary source of infection. The infection remains clinically silent in majority but it establishes a lifelong latent presence. However, in about 30 percent of infants, probably a varient HHV-6, causes exanthem subitum (roseola infantum). If the primary infection of HHV-6 is delayed until adolescence it is accompanied by clinical manifestation of an Epstein-Barr virus like infectious mononucleosis in some individuals. Depressed host immune functions may reactivate the latent HHV-6 infection and further aggravation of the primary disease. Since the virus is cytopathic to the host cell the presence of HHV-6 in AIDS patients and other lympholiferative disorders may increase the severity and pathogenicity of the primary disease. Antibodies to the HHV-6 are enhanced in autoimmune disorders, chronic fatigue syndrome, progressive lymphoroliferative disorders and organ transplant patients on immunosuppressive drugs therapy. While considerable basic immunovirological information has been obtained in the last 4 years, large gaps in knowledge still exist on the biologic interaction of HHV-6 with the host.
    Matched MeSH terms: Herpesviridae Infections
  2. Yadav M, Arivananthan M, Chandrashekran A, Tan BS, Hashim BY
    J Oral Pathol Med, 1997 Oct;26(9):393-401.
    PMID: 9385576
    Archival oral tissues comprising 51 squamous cell carcinomas, 18 non-malignant lesions and 7 normal mucosa samples were investigated for human herpesvirus-6 (HHV-6)-encoded antigens and HHV-6 DNA. The virus-specific antigens were detected by an immunohistochemical method using monoclonal antibodies. Two further techniques used for HHV-6 DNA detection included the polymerase chain reaction (PCR) with virus-specific primers and in situ hybridization using digoxigenin-labelled oligonucleotides specific for HHV-6A and HHV-6B genotypes. A high proportion (79-80%) of the squamous cell carcinomas were positive for HHV-6 with the various detection methods. In cases of lichen planus and leukoplakia a high prevalence rate (67-100%) was noted with in situ hybridization and immunohistochemical techniques but a lower proportion (22-33%) was detected with the PCR method. All 7 normal tissues tested were negative for HHV-6. The HHV-6 variant B was found in 60% of the oral carcinoma tissues analysed. The study demonstrates the frequent presence of HHV-6 in neoplastic and non-malignant lesions of the oral cavity. While the role of HHV-6 in oral mucosal tissues remains to be determined, the in vitro tumorigenic potential of the virus suggests a possible role in the etiopathogenesis of oral lesions.
    Matched MeSH terms: Herpesviridae Infections/virology
  3. Sandvej K, Peh SC, Andresen BS, Pallesen G
    Blood, 1994 Dec 15;84(12):4053-60.
    PMID: 7994023
    In this study, we have sequenced the C-terminal part of the Epstein-Barr virus (EBV)-BNLF-1 gene encoding for the latent membrane protein-1 from tissues of EBV-positive Danish Hodgkin's disease (HD) and of Danish and Malaysian peripheral T-cell lymphomas (PTLs) and from tonsils of Danish infectious mononucleosis (IM). Our study showed that some of the 7 single-base mutations and the 30-bp deletion previously detected between codons of amino acid 322 and 366 in the BNLF-1 gene of the nasopharyngeal carcinoma cell line CAO were present in all Malaysian PTLs and in 60% of the Danish PTLs. In HD and the IM cases, the mutations were present in about 30%. The 30-bp deletion and the single base mutations occurred independently, and mutations were detectable in the majority of EBV type B-positive cases. These findings suggest that the 30-bp deletion and the 7 single-base mutations in the C-terminal part of the CAO-BNLF-1 gene do not characterize a new EBV type A substrain. Rather, some of the positions of single base mutations and the 30-bp deletion are hot spots that may have mutated independently through the evolution of EBV strains.
    Matched MeSH terms: Herpesviridae Infections/microbiology*
  4. Kingma DW, Weiss WB, Jaffe ES, Kumar S, Frekko K, Raffeld M
    Blood, 1996 Jul 01;88(1):242-51.
    PMID: 8704180
    LMP-1, an Epstein-Barr viral (EBV) latency protein, is considered a viral oncogene because of its ability to transform rodent fibroblasts in vivo and render them tumorigenic in nude mice. In human B cells, EBV LMP-1 induces DNA synthesis and abrogates apoptosis. LMP-1 is expressed in EBV-transformed lymphoblastoid cell lines, nasopharyngeal carcinoma (NPC), a subset of Hodgkin's disease (HD), and in EBV-associated lymphoproliferative disorders (EBV-LPDs). Recently, focused deletions near the 3' end of the LMP-1 gene (del-LMP-1, amino acids 346-355), in a region functionally related to the half-life to the LMP-1 protein, have been reported frequently in human immunodeficiency virus (HIV)-associated HD (100%) and EBV+ Malaysian and Danish peripheral T-cell lymphomas (100%, 61% respectively), but less frequently in cases of HD not associated with HIV (28%, 33%) and infectious mononucleosis (33%). To further investigate the potential relationship of del-LMP-1 to EBV-LPDs associated with immunosuppression or immunodeficiency, we studied 39 EBV-associated lymphoproliferations (10 benign, 29 malignant) from four distinct clinical settings: posttransplant (4 malignant, 1 reactive); HIV+ (18 malignant, 2 reactive); nonimmunodeficiency malignant lymphoma (ML) (7 cases); and sporadic EBV infection with lymphoid hyperplasia (7 cases). The presence of EBV within lymphoid cells was confirmed by EBV EBER1 RNA in situ hybridization or by polymerase chain reaction (PCR) analysis. EBV strain type and LMP-1 deletion status were determined by PCR. EBV strain types segregated into two distinct distributions: HIV+ (9 A; 11 B) and non-HIV (19 A, 0 B), consistent with previous reports. Overall, del-LMP-1 were found in 1 of 5 (20%) Burkitt lymphomas (BL); 17 of 24 (71%) aggressive non-Hodgkin's lymphoma (agg-NHL), and 2 of 10 (20%) reactive lymphoid proliferations. Of the agg-NHLs, del-LMP-1 were present in 4 of 4 PT-ML (100%); 10 of 15 HIV+ ML (67%); and 3 of 5 nonimmunodeficiency malignant lymphoma (ML, 60%). A total of 2 of 7 (28%) sporadic EBV-associated lymphoid hyperplasias contained a del-LMP-1. All del-LMP-1 were identical by DNA sequence analysis. No correlation was identified between the presence of del-LMP-1 and the EBV strain type observed. The high incidence of del-LMP-1 observed in agg-NHLs (71%), in contrast to the relatively low incidence observed in reactive lymphoid proliferations (28%), suggests that the deleted form may be preferentially selected in lymphomatous processes. All posttransplant agg-NHLs contained a del-LMP-1, and a similar frequency of del-LMP-1 was observed in both HIV-associated ML (66%) and nonimmunodeficiency ML (60%), suggesting that impairment of immune function alone is not a requirement for the expansion of malignant cells infected by EBV stains containing the deleted LMP-1 gene.
    Matched MeSH terms: Herpesviridae Infections/virology*
  5. Yadav M, Nambiar S, Khoo SP, Yaacob HB
    Arch Oral Biol, 1997 Aug;42(8):559-67.
    PMID: 9347118
    The prevalence and cellular distribution of human herpesvirus 7 (HHV-7) in archival labial salivary glands was analysed for virus-specific DNA sequences by polymerase chain reaction (PCR) and in situ hybridization signals. In addition, the cellular expression of HHV-7-encoded protein was detected by immunohistochemical staining with a virus-specific monoclonal antibody. Eleven of 20 samples were positive for the HHV-7 DNA sequence by PCR. Eighteen of 20 tissues analysed by in situ hybridization showed signals in ductal, serous and mucous cells. Some nuclei of these cells and also the myoepithelial population were positive. In immunolocalization studies, all 20 salivary glands consistently showed HHV-7-expressed protein in the cytoplasm of ductal cuboidal and columnar cells. The protein was also found in the cytoplasm of mucous and serous acinar cells that were immunopositive for HHV-7. The observations are consistent with the suggestion that the labial salivary gland is a site for virus replication, potential persistence and a source of infective HHV-7 in saliva.
    Matched MeSH terms: Herpesviridae Infections
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links