MATERIALS AND METHODS: Subgingival plaque samples were collected with sterile curette and subjected to deoxyribonucleic acid (DNA) extraction and subsequent PCR for detection of P. gingivalis.
RESULTS: Porphyromonas gingivalis was detected in 60% of patients of group II (pocket depth up to 5 mm), and in 93.33% of patients of group III (pocket depth more than 5 mm). One periodontally healthy subject in group I (probing depth < 3 mm) showed the presence of P. gingivalis.
CONCLUSION: Detection frequency of bacterium increased significantly with increase in probing pocket depth (PPD), loss of attachment (LOA), and gingival index (GI).
CLINICAL SIGNIFICANCE: Porphyromonas gingivalis is strongly associated with chronic periodontitis and its detection frequency positively correlates with the severity of periodontal destruction.
MATERIALS AND METHODS: In this trial, a total of 56 eligible subjects were randomly assigned to the fasting group and the postprandial group. The two groups were given 250 mg of the test and reference preparation, respectively. Liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was applied to determine the plasma concentration of cefalexin. PhoenixWinNonlin software (V7.0) was used to calculate the pharmacokinetic parameters of cefalexin using the non-compartmental model (NCA), and the bioequivalence and safety results were calculated by SAS (V9.4) software.
RESULTS: The main pharmacokinetic parameters of the test and reference preparations were as follows, the fasting group: Cmax 12.59 ± 2.65 μg/mL, 12.72 ± 2.28 μg/mL; AUC0-8h 20.43 ± 3.47 h×μg/mL, 20.66 ± 3.38 h×μg/mL; AUC0-∞ 20.77 ± 3.53 h×μg/mL, 21.02 ± 3.45 h×μg/mL; the postprandial group: Cmax 5.25 ± 0.94 μg/mL, 5.23 ± 0.80 μg/mL; AUC0-10h 16.92 ± 2.03 h×μg/mL, 17.09 ± 2.31 h×μg/mL; AUC0-∞ 17.33 ± 2.09 h×μg/mL, 17.67 ± 2.45 h×μg/mL.
CONCLUSION: The 90% confidence intervals of geometric mean ratios of test preparation and reference preparation were calculated, and the 90% confidence intervals of geometric mean ratios of Cmax, AUC0-10h, and AUC0-∞ were within the 80.00% ~ 125.00% range in both groups. Both Cmax and AUC met the pre-determined criteria for assuming bioequivalence. The test and reference products were bioequivalent after administration under fasting as well as under fed conditions in healthy Chinese subjects. This study may suggest that successful generic versions of cefalexin not only guarantee the market supply of such drugs but can also improve the safety and effectiveness and quality controllability of cefalexin through a new process and a new drug composition ratio.
METHOD: Eligible healthy Malay volunteers were invited to undergo the high-resolution esophageal manometry (inSIGHT Ultima, Diversatek Healthcare, Milwaukee, WI, USA). In recumbent and standing positions, test swallows were performed using liquid, viscous, and solid materials. Metrics including integrated relaxation pressure 4 s (IRP-4 s, mmHg), distal contractile integral (DCI, mmHg s cm), distal latency (DL, s), and peristaltic break (PB, cm) were reported in median and 95th percentile.
RESULTS: Fifty of 57 screened participants were recruited, and 586 saline, 265 viscous, and 261 solid swallows were analyzed. Per-patient wise, in the recumbent position, 95th percentile for IRP-4 s, DCI, DL, and PB were 16.5 mmHg, 2431 mmHg s cm, 8.5 s, and 7.2 cm, respectively. We observed that with each posture, the use of viscous swallows led to changes in DL, but the use of solid swallows led to more changes in the metrics including DCI and length of PB. Compared with a recumbent posture, anupright posture led to lower IRP-4 s and DCI values. Both per-patient analysis and per-swallow analyses yielded almost similar results when comparing the different postures and types of swallows. No major motility disorders were observed in this cohort of asymptomatic population. However, more motility disorders were reported in the upright position.
CONCLUSIONS: Variations in metrics can be observed in different postures and with different provocative swallow materials in a healthy population. The normative Chicago 3.0 metrics are also determined for the Malay population.
METHODS: HGS was measured using a Jamar dynamometer in 125,462 healthy adults aged 35-70 years from 21 countries in the Prospective Urban Rural Epidemiology (PURE) study.
RESULTS: HGS values differed among individuals from different geographic regions. HGS values were highest among those from Europe/North America, lowest among those from South Asia, South East Asia and Africa, and intermediate among those from China, South America, and the Middle East. Reference ranges stratified by geographic region, age, and sex are presented. These ranges varied from a median (25th-75th percentile) 50 kg (43-56 kg) in men <40 years from Europe/North America to 18 kg (14-20 kg) in women >60 years from South East Asia. Reference ranges by ethnicity and body-mass index are also reported.
CONCLUSIONS: Individual HGS measurements should be interpreted using region/ethnic-specific reference ranges.
Materials and Methods: A total number of 50 participants (40 with chronic generalized periodontitis and 10 periodontally healthy volunteers) of 30-50 years were included in the study. Clinical parameters such as simplified oral hygiene index (OHI-S), gingival index, probing depth, and clinical attachment loss (CAL) were measured, and then, saliva and blood sample collection was done and analyzed for ALP levels by spectrometry. The clinical parameters along with saliva and serum ALP levels were reevaluated after 30 days following Phase I periodontal therapy. The results were statistically analyzed using paired t-test and one-way ANOVA.
Results: The saliva and serum ALP levels were significantly increased in patients with chronic generalized periodontitis with an increase in clinical parameters such as OHI-S, gingival index, probing depth, and CAL when compared with periodontally healthy individuals. The saliva and serum ALP levels were significantly decreased following Phase I periodontal, therapy along with improvement in clinical parameters.
Conclusion: With the limitations of the present study, it could be concluded that ALP levels in saliva can be used for the diagnosis of active phase of periodontal disease and also for evaluation of the treatment outcomes following Phase I periodontal therapy.