Displaying publications 21 - 26 of 26 in total

Abstract:
Sort:
  1. Hassani A, Azarian MMS, Ibrahim WN, Hussain SA
    Sci Rep, 2020 10 20;10(1):17808.
    PMID: 33082415 DOI: 10.1038/s41598-020-71175-8
    Gallic acid (GA) is a natural phenolic compound with therapeutic effects that are often challenged by its rapid metabolism and clearance. Therefore,  GA was encapsulated using gum arabic into nanoparticles to increase its bioavailability. The formulated nanoparticles (GANPs) were characterized for physicochemical properties and size and were then evaluated for antioxidant and antihypertensive effects using various established in vitro assays, including 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide scavenging (NO), β-carotene bleaching and angiotensin-converting enzyme (ACE) inhibitory assays. The GANPs were further evaluated for the in vitro cytotoxicity, cell uptake and cell migration in four types of human cancer cell lines including (MCF-7, MDA-MB231) breast adenocarcinoma, HepG2 hepatocellular cancer, HT-29 colorectal adenocarcinoma, and MCF-10A breast epithelial cell lines. The GANPs demonstrated potent antioxidant effects and have shown promising anti-cancer properties in a dose-dependent manner with a predilection toward HepG2 and MCF7 cancer cells. The uptake of GANPs was successful in the majority of cancer cells with a propensity to accumulate in the nuclear region of the cells. The HepG2 and MCF7 cancer cells also had a significantly higher percentage of apoptosis and were more sensitive to gallic acid nanoparticle treatment in the cell migration assay. This study is the first to confirm the synergistic effects of gum arabic in the encapsulation of gallic acid by increasing the selectivity towards cancer cells and enhancing  the antioxidant properties. The formulated nanoparticles also had remarkably low toxicity in normal cells. Based on these findings, GANPs may have promising therapeutic applications towards the development of more effective treatments with a probable targeting precision in cancer cells.
    Matched MeSH terms: Gum Arabic/chemistry
  2. Chew SC, Tan CP, Nyam KL
    J Food Sci, 2018 Sep;83(9):2288-2294.
    PMID: 30074623 DOI: 10.1111/1750-3841.14291
    Kenaf seed oil is prone to undergo oxidation due to its high content of unsaturated fatty acids, thus microencapsulation stands as an alternative to protect kenaf seed oil from the adverse environment. This study primarily aimed to evaluate the oxidative stability of microencapsulated refined kenaf seed oil (MRKSO) by the use of gum arabic, β-cyclodextrin, and sodium caseinate as the wall materials by spray drying. Bulk refined kenaf seed oil (BRKSO) and MRKSO were kept at 65 °C for 24 days to evaluate its oxidative stability, changes of tocopherol and tocotrienol contents, phytosterol content, and fatty acid profile. The results showed that the peroxide value, p-Anisidine value, and total oxidation value of BRKSO were significantly higher than the MRKSO at day 24. The total tocopherol and tocotrienol contents were reduced 66.1% and 56.8% in BRKSO and MRKSO, respectively, upon the storage. There was a reduction of 71.7% and 23.5% of phytosterol content in BRKSO and MRKSO, respectively, upon the storage. The degradation rate of polyunsaturated fatty acids in BRKSO was higher than that of MRKSO. This study showed that the current microencapsulation technique is a feasible way to retard the oxidation of kenaf seed oil.

    PRACTICAL APPLICATION: There is increasing research on the functional properties of crude kenaf seed oil, but the crude kenaf seed oil is not edible. This study offered in developing of microencapsulated refined kenaf seed oil by spray drying, which is suitable for food application. The microencapsulation of refined kenaf seed oil with healthier wall materials is beneficial in developing a diversity of functional food products and supplements.

    Matched MeSH terms: Gum Arabic*
  3. Mehrnoush A, Mustafa S, Yazid AM
    Int J Mol Sci, 2012;13(3):2939-50.
    PMID: 22489134 DOI: 10.3390/ijms13032939
    Response surface methodology (RSM) along with central composite design (CCD) was applied to optimize the freeze drying conditions for purified pectinase from mango (Mangifera indica cv. Chokanan) peel. The effect of pectinase content (-2.66, 62.66 mg/mL), Arabic gum (-1.21, 10.21%, w/v), and maltodextrin (0.73, 7.26%, w/v) as independent variables on activity, yield, and storage stability of freeze-dried enzyme was evaluated. Storage stability of pectinase was investigated after one week at 4 °C and yield percentage of the enzyme after encapsulation was also determined. The independent variables had the most significant (p < 0.05) effect on pectinase activity and yield of the enzyme. It was observed that the interaction effect of Arabic gum and maltodextrin improved the enzymatic properties of freeze-dried pectinase. The optimal conditions for freeze-dried pectinase from mango peel were obtained using 30 mg/mL of pectinase content, 4.5 (%, w/v) of Arabic gum, and 4 (%, w/v) of maltodextrin. Under these conditions, the maximum activity (11.12 U/mL), yield (86.4%) and storage stability (84.2%) of encapsulated pectinase were achieved.
    Matched MeSH terms: Gum Arabic
  4. Mohamed Soleiman Barre, Fathilah Ali, Mohamed Elwathig Saeed Mirghani, Noor Faizul Hadri Nordin
    MyJurnal
    The global burden of disease studies estimated that oral diseases affected half of the world’s population (3.58 billion people) with dental caries (tooth decay) in permanent teeth being the most prevalent condition assessed. On the other hand, the increasing resistance of dental caries towards the available antimicrobials and extensive use of the controversial synthetic chemicals to overcome these problems have attracted the scientific community’s attention to the search for new cost-effective remedies of natural products. Frankincense or Boswellia species are highly import-ant aromatic plants belonging to the Burseraceae family. The present study will focus on an in-vitro anti-inflamma-tion and anti-bacterial activity of Boswellia carterii (BC) Essential oil (EO) encapsulated into the Gum Arabic (GA) polymer. Thus, certain mouth pathogenic bacteria, which are the main contributors to dental caries and gingivitis, namely (Streptococcus mutans and Lactobacillus species), and their in-vitro responses to the defined micro-particles, will pave the way to introduce a new potential remedy to the forth mentioned problems.
    Matched MeSH terms: Gum Arabic
  5. Abdelkader Hassani, Siti Aslina Hussain?, Abdullah, N., Suryani Kamarudin, Rozita Rosli
    MyJurnal
    The present work investigated the antioxidant properties and antihypertensive activity of
    magnesium orotate (MgOr) using various established in vitro assays, such as β-carotene
    bleaching activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH), and nitric oxide scavenging activity as well as angiotensin converting enzyme (ACE) inhibitory activity. Magnesium orotate
    nanoparticles (MgOrGANPs) were prepared using the gum arabic (GA) as stabiliser coatings
    for nanoparticles through freeze-drying method. The in vitro cytoxicity of MgOrGANPs
    against human breast cancer MCF7, liver cancer HepG2, and colon cancer HT29 was investigated. The nitric oxide (NO) and DPPH scavenging assays of MgOrGANPs showed a
    dose-dependent trend, while 500 and 200 µL/mL were significantly more effective than the
    other concentrations with an IC50 of 89.56 µg/mL and 63.22% DPPH scavenging capacity
    respectively. The exposure of human cancer cells to MgOrGANPs at 1.56 – 1,000 µg/mL
    using 3-)4,5-dimethylthiazol-2-yl(2,5-diphenyl tetrazolium bromide (MTT) inhibited the
    growth of cell lines examined in a dose-dependent manner. Hence, MgOrGANPs may have
    great potential to be applied for cancer treatments.
    Matched MeSH terms: Gum Arabic
  6. Anwar A, Masri A, Rao K, Rajendran K, Khan NA, Shah MR, et al.
    Sci Rep, 2019 02 28;9(1):3122.
    PMID: 30816269 DOI: 10.1038/s41598-019-39528-0
    Herein, we report green synthesized nanoparticles based on stabilization by plant gums, loaded with citrus fruits flavonoids Hesperidin (HDN) and Naringin (NRG) as novel antimicrobial agents against brain-eating amoebae and multi-drug resistant bacteria. Nanoparticles were thoroughly characterized by using zetasizer, zeta potential, atomic force microscopy, ultravoilet-visible and Fourier transform-infrared spectroscopic techniques. The size of these spherical nanoparticles was found to be in the range of 100-225 nm. The antiamoebic effects of these green synthesized Silver and Gold nanoparticles loaded with HDN and NRG were tested against Acanthamoeba castellanii and Naegleria fowleri, while antibacterial effects were evaluated against methicillin-resistant Staphylococcus aureus (MRSA) and neuropathogenic Escherichia coli K1. Amoebicidal assays revealed that HDN loaded Silver nanoparticles stabilized by gum acacia (GA-AgNPs-HDN) quantitatively abolished amoeba viability by 100%, while NRG loaded Gold nanoparticles stabilized by gum tragacanth (GT-AuNPs-NRG) significantly reduced the viability of A. castellanii and N. fowleri at 50 µg per mL. Furthermore, these nanoparticles inhibited the encystation and excystation by more than 85%, as well as GA-AgNPs-HDN only completely obliterated amoeba-mediated host cells cytopathogenicity. Whereas, GA-AgNPs-HDN exhibited significant bactericidal effects against MRSA and E. coli K1 and reduced bacterial-mediated host cells cytotoxicity. Notably, when tested against human cells, these nanoparticles showed minimal (23%) cytotoxicity at even higher concentration of 100 µg per mL as compared to 50 µg per mL used for antimicrobial assays. Hence, these novel nanoparticles formulations hold potential as therapeutic agents against infections caused by brain-eating amoebae, as well as multi-drug resistant bacteria, and recommend a step forward in drug development.
    Matched MeSH terms: Gum Arabic/chemistry
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links