Displaying publications 21 - 40 of 132 in total

Abstract:
Sort:
  1. Bender AE, Ismail KS
    Proc Nutr Soc, 1973 Sep;32(2):79A-80A.
    PMID: 4791076
    Matched MeSH terms: Food Analysis*
  2. Teoh Soon Teong
    Med J Malaysia, 1973 Jun;27(4):243-7.
    PMID: 4270779
    Matched MeSH terms: Food Analysis*
  3. Sajali N, Wong SC, Hanapi UK, Abu Bakar Jamaluddin S, Tasrip NA, Mohd Desa MN
    J Food Sci, 2018 Oct;83(10):2409-2414.
    PMID: 30184265 DOI: 10.1111/1750-3841.14338
    High-quality DNA extracts are imperative for downstream applications in molecular identification. Most processed food products undergo heat treatments causing DNA degradation, which hampers application of DNA-based techniques for food authentication. Moreover, the presence of inhibitors in processed food products is also problematic, as inhibitors can impede the process of obtaining high qualities and quantities of DNA. Various approaches in DNA extraction and factors in structure and texture of various food matrices affecting DNA extraction are explained in this review.
    Matched MeSH terms: Food Analysis*
  4. Tiong SH, Nair A, Abd Wahid SA, Saparin N, Ab Karim NA, Ahmad Sabri MP, et al.
    PMID: 34407744 DOI: 10.1080/19440049.2021.1960430
    Chlorinated compounds such as sphingolipid-based organochlorine compounds are precursors for the formation of 3-monochlororopanediol (3-MCPD) esters in palm oil. This study evaluates the effects of several factors within the palm oil supply chain on the levels of sphingolipid-based organochlorine, which in turn may influence the formation of 3-MCPD esters during refining. These factors include application of inorganic chlorinated fertiliser in the oil palm plantation, bruising and degradation of oil palm fruits after harvest, recycling of steriliser condensate as water for dilution of crude oil during oil palm milling, water washing of palm oil and different refining conditions. It was observed that bruised and degraded oil palm fruits showed higher content of sphingolipid-based organochlorine than control. In addition, recycling steriliser condensate during milling resulted in elevated content of sphingolipid-based organochlorine in palm oil. However, the content of sphingolipid-based organochlorine compounds was reduced by neutralisation, degumming and bleaching steps during refining. Although water washing of crude palm oils (CPO) prior to refining did not reduce the content of sphingolipid-based organochlorine, it did reduce the formation of 3-MCPD esters through the removal of water-soluble chlorinated compounds. It was found that the use of inorganic chlorinated fertiliser in plantations did not increase the content of chlorinated compounds in oil palm fruits and extracted oil, and hence chlorinated fertiliser does not seem to play a role in the formation of 3-MCPD esters in palm oil. Overall, this study concluded that lack of freshness and damage to the fruits during transport to mills, combined with water and oil recycling in mills are the major contributors of chlorinated precursor for 3-MCPD esters formation in palm oil.
    Matched MeSH terms: Food Analysis*
  5. Salimon J, Omar TA, Salih N
    ScientificWorldJournal, 2014;2014:906407.
    PMID: 24719581 DOI: 10.1155/2014/906407
    Two different procedures for the methylation of fatty acids (FAs) and trans fatty acids (TFAs) in food fats were compared using gas chromatography (GC-FID). The base-catalyzed followed by an acid-catalyzed method (KOCH3/HCl) and the base-catalyzed followed by (trimethylsilyl)diazomethane (TMS-DM) method were used to prepare FA methyl esters (FAMEs) from lipids extracted from food products. In general, both methods were suitable for the determination of cis/trans FAs. The correlation coefficients (r) between the methods were relatively small (ranging from 0.86 to 0.99) and had a high level of agreement for the most abundant FAs. The significant differences (P = 0.05) can be observed for unsaturated FAs (UFAs), specifically for TFAs. The results from the KOCH3/HCl method showed the lowest recovery values (%R) and higher variation (from 84% to 112%), especially for UFAs. The TMS-DM method had higher R values, less variation (from 90% to 106%), and more balance between variation and %RSD values in intraday and interday measurements (less than 4% and 6%, resp.) than the KOCH3/HCl method, except for C12:0, C14:0, and C18:0. Nevertheless, the KOCH3/HCl method required shorter time and was less expensive than the TMS-DM method which is more convenient for an accurate and thorough analysis of rich cis/trans UFA samples.
    Matched MeSH terms: Food Analysis*
  6. Dirong G, Nematbakhsh S, Selamat J, Chong PP, Idris LH, Nordin N, et al.
    Molecules, 2021 Oct 28;26(21).
    PMID: 34770913 DOI: 10.3390/molecules26216502
    Chicken is known to be the most common meat type involved in food mislabeling and adulteration. Establishing a method to authenticate chicken content precisely and identifying chicken breeds as declared in processed food is crucial for protecting consumers' rights. Categorizing the authentication method into their respective omics disciplines, such as genomics, transcriptomics, proteomics, lipidomics, metabolomics, and glycomics, and the implementation of bioinformatics or chemometrics in data analysis can assist the researcher in improving the currently available techniques. Designing a vast range of instruments and analytical methods at the molecular level is vital for overcoming the technical drawback in discriminating chicken from other species and even within its breed. This review aims to provide insight and highlight previous and current approaches suitable for countering different circumstances in chicken authentication.
    Matched MeSH terms: Food Analysis/methods
  7. Iqbal MS, Bahari MB, Darwis Y, Iqbal MZ, Hayat A, Venkatesh G
    J AOAC Int, 2013 6 19;96(2):290-4.
    PMID: 23767352
    A simple and selective RP-HPLC-UV method with SPE was developed and validated for the quantification of cefotaxime in all-in-one total parenteral nutrition (AIO-TPN) admixtures. Chromatographic separation was achieved on a 5 pm particle size C18 DB column (250 x 4.6 mm id) using the mobile phase ammonium acetate (25 mM, pH 4.0)-50% acetonitrile in methanol (80 + 20, v/v). The flow rate was 0.9 mL/min and the detection wavelength was 254 nm. The analyte was extracted from AIO-TPN admixtures by means of an SPE method. The cefotaxime calibration curve was linear over a concentration range of 100-1400 microg/mL with a correlation coefficient of > or = 0.9994. The intraday accuracy and precision for cefotaxime were < or = -3.15 and < or = 3.08%, respectively, whereas the interday accuracy and precision were < or = -2.48 and < or = 2.25%, respectively. The method was successfully applied to stability studies of cefotaxime in the presence of micronutrients together with low and high concentrations of macronutrients in AIO-TPN admixtures. Cefotaxime was degraded by 13.00 and 26.05% at room temperature (25 +/- 2 degrees C) after 72 h in low and high macronutrient concentration formulations of AIO-TPN admixtures, respectively. The values of cefotaxime degradation rates for low and high macronutrient concentration formulations of AIO-TPN admixtures were -0.164 and -0.353, respectively. These results indicated that there was a higher rate of degradation in the AIO-TPN admixture formulations containing high concentrations of macronutrients.
    Matched MeSH terms: Food Analysis/methods; Food Analysis/standards
  8. Zia Q, Alawami M, Mokhtar NFK, Nhari RMHR, Hanish I
    Food Chem, 2020 Sep 15;324:126664.
    PMID: 32380410 DOI: 10.1016/j.foodchem.2020.126664
    Authentication of meat products is critical in the food industry. Meat adulteration may lead to religious apprehensions, financial gain and food-toxicities such as meat allergies. Thus, empirical validation of the quality and constituents of meat is paramount. Various analytical methods often based on protein or DNA measurements are utilized to identify meat species. Protein-based methods, including electrophoretic and immunological techniques, are at times unsuitable for discriminating closely related species. Most of these methods have been replaced by more accurate and sensitive detection methods, such as DNA-based techniques. Emerging technologies like DNA barcoding and mass spectrometry are still in their infancy when it comes to their utilization in meat detection. Gold nanobiosensors have shown some promise in this regard. However, its applicability in small scale industries is distant. This article comprehensively reviews the recent developments in the field of analytical methods used for porcine identification.
    Matched MeSH terms: Food Analysis/instrumentation; Food Analysis/methods*
  9. Agyei D, Acquah C, Tan KX, Hii HK, Rajendran SRCK, Udenigwe CC, et al.
    Anal Bioanal Chem, 2018 Jan;410(2):297-306.
    PMID: 28884330 DOI: 10.1007/s00216-017-0599-9
    Food-derived bioactive proteins and peptides have gained acceptance among researchers, food manufacturers and consumers as health-enhancing functional food components that also serve as natural alternatives for disease prevention and/or management. Bioactivity in food proteins and peptides is determined by their conformations and binding characteristics, which in turn depend on their primary and secondary structures. To maintain their bioactivities, the molecular integrity of bioactive peptides must remain intact, and this warrants the study of peptide form and structure, ideally with robust, highly specific and sensitive techniques. Short single-stranded nucleic acids (i.e. aptamers) are known to have high affinity for cognate targets such as proteins and peptides. Aptamers can be produced cost-effectively and chemically derivatized to increase their stability and shelf life. Their improved binding characteristics and minimal modification of the target molecular signature suggests their suitability for real-time detection of conformational changes in both proteins and peptides. This review discusses the developmental progress of systematic evolution of ligands by exponential enrichment (SELEX), an iterative technology for generating cost-effective aptamers with low dissociation constants (Kd) for monitoring the form and structure of bioactive proteins and peptides. The review also presents case studies of this technique in monitoring the structural stability of bioactive peptide formulations to encourage applications in functional foods. The challenges and potential of aptamers in this research field are also discussed. Graphical abstract Advancing bioactive proteins and peptide functionality via aptameric ligands.
    Matched MeSH terms: Food Analysis/methods*; Functional Food/analysis*
  10. Othman A, Goggin KA, Tahir NI, Brodrick E, Singh R, Sambanthamurthi R, et al.
    BMC Res Notes, 2019 Apr 16;12(1):229.
    PMID: 30992056 DOI: 10.1186/s13104-019-4263-7
    OBJECTIVE: The addition of residual oils such as palm fibre oil (PFO) and sludge palm oil (SPO) to crude palm oil (CPO) can be problematic within supply chains. PFO is thought to aggravate the accumulation of monochloropropanediols (MCPDs) in CPO, whilst SPO is an acidic by-product of CPO milling and is not fit for human consumption. Traditional targeted techniques to detect such additives are costly, time-consuming and require highly trained operators. Therefore, we seek to assess the use of gas chromatography-ion mobility spectrometry (GC-IMS) for rapid, cost-effective screening of CPO for the presence of characteristic PFO and SPO volatile organic compound (VOC) fingerprints.

    RESULTS: Lab-pressed CPO and commercial dispatch tank (DT) CPO were spiked with PFO and SPO, respectively. Both additives were detectable at concentrations of 1% and 10% (w/w) in spiked lab-pressed CPO, via seven PFO-associated VOCs and 21 SPO-associated VOCs. DT controls could not be distinguished from PFO-spiked DT CPO, suggesting these samples may have already contained low levels of PFO. DT controls were free of SPO. SPO was detected in all SPO-spiked dispatch tank samples by all 21 of the previously distinguished VOCs and had a significant fingerprint consisting of four spectral regions.

    Matched MeSH terms: Food Analysis/instrumentation; Food Analysis/methods*
  11. Akmar ZD, Norhaizan ME, Azimah R, Azrina A, Chan YM
    Malays J Nutr, 2013 Apr;19(1):87-98.
    PMID: 24800387 MyJurnal
    INTRODUCTION: There is a lack of information on the trans fatty acid (TFA) content in Malaysian foods. The objective of this study is to determine the TFA content of bakery products, snacks, dairy products, fast foods, cooking oils and semisolid fats, and breakfast cereals and Malaysian fast foods. This study also estimated the quantity of each isomer in the foods assayed.
    METHODS: The trans fatty acid content of each food sample was assessed in duplicate by separating the fatty acid methyl esters (FAME) in a gas chromatography system equipped with HP-88 column (USA: split ratio 10: 1) for cis/trans separation. Five major TFA isomers, palmitoelaidic acid (16: 1t9), petroselaidic acid (18:1t6), elaidic acid (18:1t9), vaccenic acid (18: 1t11) and linoelaidic acid (18:2t9, 12), were measured using gas chromatography (GC) and the data were expressed in unit values of g/100 g lipid or g/100 g food.
    RESULTS: The total TFA contents in the studied foods were < 0.001 g-8.77 g/100 g lipid or < 0.001 g-5.79 g/100 g foods. This value falls within the standard and international recommendation level for TFA. The measured range of specific TFA isomers were as follows: palmitoelaidic acid (< 0.001 g-0.26 g/100 g lipid), petroselaidic acid (< 0.001 g - 3.09 g/100 g lipid), elaidic acid (< 0.001 g-0.87 g/100 g lipid), vaccenic acid (< 0.001 g-0.41 g/100 g lipid) and linoelaidic acid (< 0.001 g-6.60 g/100 g lipid).
    CONCLUSION: These data indicate that most of the tested foods have low TFA contents (< 1 g/100 g lipid).
    Matched MeSH terms: Food Analysis/methods*; Food Analysis/statistics & numerical data*
  12. Lal A, Tan G, Chai M
    Anal Sci, 2008 Feb;24(2):231-6.
    PMID: 18270414
    A new extraction and cleanup procedure with gas chromatography was developed for the sensitive determination of acephate, dimethoate, malathion, diazinon, quinalphos, chlorpyrifos, profenofos, alpha-endosulfan, beta-endosulfan, chlorothalonil and carbaryl using 1-chloro-4-fluorobenzene as an internal standard in fruits and vegetables. Several extracting and eluting solvents for solid-phase extraction were investigated. The overall extracting solvent with a mixture of acetone:ethyl acetate:hexane (10:80:10, v/v/v) and a eluting solvent of 5% acetone in hexane used with the RPC18 cartridge gave the best recovery for all of the investigated pesticides, and minimized the interference from co-extractants. Under the optimal extraction and clean-up conditions, recoveries of 85 - 99% with RSD < 5.0% (n = 3) for most of the pesticides at the 0.02 - 0.5 mg/kg level were obtained. The limit of detection was between 0.005 - 0.01 mg/kg and the limit of quantification was 0.01 mg/kg. This analytical procedure was characterized with high accuracy and acceptable sensitivity to meet requirements for monitoring pesticides in crops.
    Matched MeSH terms: Food Analysis/instrumentation; Food Analysis/methods*
  13. Sim SF, Ting W
    Talanta, 2012 Jan 15;88:537-43.
    PMID: 22265538 DOI: 10.1016/j.talanta.2011.11.030
    This paper reports a computational approach for analysis of FTIR spectra where peaks are detected, assigned and matched across samples to produce a peak table with rows corresponding to samples and columns to variables. The algorithm is applied on a dataset of 103 spectra of a broad range of edible oils for exploratory analysis and variable selection using Self Organising Maps (SOMs) and t-statistics, respectively. Analysis on the resultant peak table allows the underlying patterns and the discriminatory variables to be revealed. The algorithm is user-friendly; it involves a minimal number of tunable parameters and would be useful for analysis of a large and complicated FTIR dataset.
    Matched MeSH terms: Food Analysis
  14. Lee BQ, Wan Mohamed Radzi CW, Khor SM
    J Chromatogr A, 2016 Feb 5;1432:101-10.
    PMID: 26792449 DOI: 10.1016/j.chroma.2015.12.087
    This paper reports the application of hexamethyldisilazane-trimethylsilyl trifluoromethanesulfonate (HMDS-TMSOTf) for the simultaneous silylation of 3-monochloro-1,2-propanediol (3-MCPD) and 1,3-dicholoropropanol (1,3-DCP) in solid and liquid food samples. 3-MCPD and 1,3-DCP are chloropropanols that have been established as Group 2B carcinogens in clinical testing. They can be found in heat-processed food, especially when an extended high-temperature treatment is required. However, the current AOAC detection method is time-consuming and expensive. Thus, HMDS-TMSOTf was used in this study to provide a safer, and cost-effective alternative to the HFBI method. Three important steps are involved in the quantification of 3-MCPD and 1,3-DCP: extraction, derivatization and quantification. The optimization of the derivatization process, which involved focusing on the catalyst volume, derivatization temperature, and derivatization time was performed based on the findings obtained from both the Box-Behnken modeling and a real experimental set up. With the optimized conditions, the newly developed method was used for actual food sample quantification and the results were compared with those obtained via the standard AOAC method. The developed method required less samples and reagents but it could be used to achieve lower limits of quantification (0.0043mgL(-1) for 1,3-DCP and 0.0011mgL(-1) for 3-MCPD) and detection (0.0028mgL(-1) for 1,3-DCP and 0.0008mgL(-1) for 3-MCPD). All the detected concentrations are below the maximum tolerable limit of 0.02mgL(-1). The percentage of recovery obtained from food sample analysis was between 83% and 96%. The new procedure was validated with the AOAC method and showed a comparable performance. The HMDS-TMSOTf derivatization strategy is capable of simultaneously derivatizing 1,3-DCP and 3-MCPD at room temperature, and it also serves as a rapid, sensitive, and accurate analytical method for food samples analysis.
    Matched MeSH terms: Food Analysis
  15. Latifah R, Razak IA
    J Pedod, 1989;13(4):323-7.
    PMID: 2638396
    The fluoride content of several brands of infant milk formulas were determined to approximate that available in the water used in its preparation. It was also found that the public water supply contains a mean fluoride content of 0.379 ppm. The daily fluoride intake derived from infant milk formulas in a fluoridated community is discussed in relation to the recommended dosage.
    Matched MeSH terms: Infant Food/analysis*
  16. Tee ES, Ng TK, Chong YH
    Med J Malaysia, 1979 Jun;33(4):334-41.
    PMID: 522746
    Matched MeSH terms: Food Analysis
  17. Lee LC, Liong CY, Jemain AA
    Analyst, 2018 Jul 23;143(15):3526-3539.
    PMID: 29947623 DOI: 10.1039/c8an00599k
    Partial least squares-discriminant analysis (PLS-DA) is a versatile algorithm that can be used for predictive and descriptive modelling as well as for discriminative variable selection. However, versatility is both a blessing and a curse and the user needs to optimize a wealth of parameters before reaching reliable and valid outcomes. Over the past two decades, PLS-DA has demonstrated great success in modelling high-dimensional datasets for diverse purposes, e.g. product authentication in food analysis, diseases classification in medical diagnosis, and evidence analysis in forensic science. Despite that, in practice, many users have yet to grasp the essence of constructing a valid and reliable PLS-DA model. As the technology progresses, across every discipline, datasets are evolving into a more complex form, i.e. multi-class, imbalanced and colossal. Indeed, the community is welcoming a new era called big data. In this context, the aim of the article is two-fold: (a) to review, outline and describe the contemporary PLS-DA modelling practice strategies, and (b) to critically discuss the respective knowledge gaps that have emerged in response to the present big data era. This work could complement other available reviews or tutorials on PLS-DA, to provide a timely and user-friendly guide to researchers, especially those working in applied research.
    Matched MeSH terms: Food Analysis
  18. Rashidi Nodeh H, Wan Ibrahim WA, Kamboh MA, Sanagi MM
    Food Chem, 2018 Jan 15;239:208-216.
    PMID: 28873561 DOI: 10.1016/j.foodchem.2017.06.094
    Graphene (G) modified with magnetite (Fe3O4) and sol-gel hybrid tetraethoxysilane-methyltrimethoxysilane (TEOS-MTMOS) was used as a clean-up adsorbent in magnetic solid phase extraction (MSPE) for direct determination of acrylamide in various food samples prior to gas chromatography-mass spectrometry analysis. Good linearity (R2=0.9990) was achieved for all samples using matrix-matched calibration. The limit of detection (LOD=3×SD/m) obtained was 0.061-2.89µgkg-1 for the studied food samples. Native acrylamide was found to be highest in fried potato with bright-fleshed (900.81µgkg-1) and lowest in toasted bread (5.02µgkg-1). High acrylamide relative recovery (RR=82.7-105.2%) of acrylamide was obtained for spiked (5 and 50µgkg-1) food samples. The Fe3O4@G-TEOS-MTMOS is reusable up to 7 times as a clean-up adsorbent with good recovery (>85%). The presence of native acrylamide was confirmed by mass analysis at m/z=71 ([C3H5NO]+) and m/z=55 ([C3H3O]+).
    Matched MeSH terms: Food Analysis
  19. Iradukunda C, Aida WMW, Ouafi AT, Barkouch Y, Boussaid A
    J Dairy Res, 2018 Feb;85(1):114-120.
    PMID: 29468995 DOI: 10.1017/S0022029917000796
    Matched MeSH terms: Food Analysis
  20. Harun NH, Misron N, Mohd Sidek R, Aris I, Wakiwaka H, Tashiro K
    Sensors (Basel), 2014;14(11):21923-40.
    PMID: 25414970 DOI: 10.3390/s141121923
    As the main exporter in the oil palm industry, the need to improve the quality of palm oil has become the main interest among all the palm oil millers in Malaysia. To produce good quality palm oil, it is important for the miller to harvest a good oil palm Fresh Fruit Bunch (FFB). Conventionally, the main reference used by Malaysian harvesters is the manual grading standard published by the Malaysian Palm Oil Board (MPOB). A good oil palm FFB consists of all matured fruitlets, aged between 18 to 21 weeks of antheses (WAA). To expedite the harvesting process, it is crucial to implement an automated detection system for determining the maturity of the oil palm FFB. Various automated detection methods have been proposed by researchers in the field to replace the conventional method. In our preliminary study, a novel oil palm fruit sensor to detect the maturity of oil palm fruit bunch was proposed. The design of the proposed air coil sensor based on the inductive sensor was further investigated mainly in the context of the effect of coil diameter to improve its sensitivity. In this paper, the sensitivity of the inductive sensor was further examined with a dual flat-type shape of air coil. The dual air coils were tested on fifteen samples of fruitlet from two categories, namely ripe and unripe. Samples were tested within 20 Hz to 10 MHz while evaluations on both peaks were done separately before the gap between peaks was analyzed. A comparative analysis was conducted to investigate the improvement in sensitivity of the induction-based oil palm fruit sensor as compared to previous works. Results from the comparative study proved that the inductive sensor using a dual flat-type shape air coil has improved by up to 167%. This provides an indication in the improvement in the coil sensitivity of the palm oil fruit sensor based on the induction concept.
    Matched MeSH terms: Food Analysis/instrumentation*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links