Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. Uni S, Mat Udin AS, Agatsuma T, Saijuntha W, Junker K, Ramli R, et al.
    Parasit Vectors, 2017 Apr 20;10(1):194.
    PMID: 28427478 DOI: 10.1186/s13071-017-2105-9
    BACKGROUND: The filarial nematodes Wuchereria bancrofti (Cobbold, 1877), Brugia malayi (Brug, 1927) and B. timori Partono, Purnomo, Dennis, Atmosoedjono, Oemijati & Cross, 1977 cause lymphatic diseases in humans in the tropics, while B. pahangi (Buckley & Edeson, 1956) infects carnivores and causes zoonotic diseases in humans in Malaysia. Wuchereria bancrofti, W. kalimantani Palmieri, Pulnomo, Dennis & Marwoto, 1980 and six out of ten Brugia spp. have been described from Australia, Southeast Asia, Sri Lanka and India. However, the origin and evolution of the species in the Wuchereria-Brugia clade remain unclear. While investigating the diversity of filarial parasites in Malaysia, we discovered an undescribed species in the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia).

    METHODS: We examined 81 common treeshrews from 14 areas in nine states and the Federal Territory of Peninsular Malaysia for filarial parasites. Once any filariae that were found had been isolated, we examined their morphological characteristics and determined the partial sequences of their mitochondrial cytochrome c oxidase subunit 1 (cox1) and 12S rRNA genes. Polymerase chain reaction (PCR) products of the internal transcribed spacer 1 (ITS1) region were then cloned into the pGEM-T vector, and the recombinant plasmids were used as templates for sequencing.

    RESULTS: Malayfilaria sofiani Uni, Mat Udin & Takaoka, n. g., n. sp. is described based on the morphological characteristics of adults and microfilariae found in common treeshrews from Jeram Pasu, Kelantan, Malaysia. The Kimura 2-parameter distance between the cox1 gene sequences of the new species and W. bancrofti was 11.8%. Based on the three gene sequences, the new species forms a monophyletic clade with W. bancrofti and Brugia spp. The adult parasites were found in tissues surrounding the lymph nodes of the neck of common treeshrews.

    CONCLUSIONS: The newly described species appears most closely related to Wuchereria spp. and Brugia spp., but differs from these in several morphological characteristics. Molecular analyses based on the cox1 and 12S rRNA genes and the ITS1 region indicated that this species differs from both W. bancrofti and Brugia spp. at the genus level. We thus propose a new genus, Malayfilaria, along with the new species M. sofiani.

    Matched MeSH terms: Filariasis/parasitology
  2. Junaid OQ, Vythilingam I, Khaw LT, Sivanandam S, Mahmud R
    Parasitol Res, 2020 Apr;119(4):1301-1315.
    PMID: 32179986 DOI: 10.1007/s00436-020-06632-4
    Malaria and lymphatic filariasis (LF) are two leading and common mosquito-borne parasitic diseases worldwide. These two diseases are co-endemic in many tropical and sub-tropical regions and are known to share vectors. The interactions between malaria and filarial parasites are poorly understood. Thus, this study aimed at establishing the interactions that occur between Brugia pahangi and Plasmodium berghei ANKA (PbA) co-infection in gerbils. Briefly, the gerbils were matched according to age, sex, and weight and grouped into filarial-only infection, PbA-only infection, co-infection, and control group. The parasitemia, survival and clinical assessment of the gerbils were monitored for a period of 30 days post Plasmodium infection. The immune responses of gerbils to both mono and co-infection were monitored. Findings show that co-infected gerbils have higher survival rate than PbA-infected gerbils. Food and water consumption were significantly reduced in both PbA-infected and co-infected gerbils, although loss of body weight, hypothermia, and anemia were less severe in co-infected gerbils. Plasmodium-infected gerbils also suffered hypoglycemia, which was not observed in co-infected gerbils. Furthermore, gerbil cytokine responses to co-infection were significantly higher than PbA-only-infected gerbils, which is being suggested as a factor for their increased longevity. Co-infected gerbils had significantly elicited interleukin-4, interferon-gamma, and tumor necrotic factor at early stage of infection than PbA-infected gerbils. Findings from this study suggest that B. pahangi infection protect against severe anemia and hypoglycemia, which are manifestations of PbA infection.
    Matched MeSH terms: Filariasis/parasitology
  3. Al-Abd NM, Nor ZM, Junaid QO, Mansor M, Hasan MS, Kassim M
    Pathog Glob Health, 2017 Oct;111(7):388-394.
    PMID: 29065795 DOI: 10.1080/20477724.2017.1380946
    Lymphatic filariasis (LF) is a vector borne disease caused by parasitic worms such as Wuchereria bancrofti, Brugia malayi and B. timori, which are transmitted by mosquitoes. Current therapeutics to treat LF are mainly microfilarcidal, and lack activity against adult worms. This set back, poses a challenge for the control and elimination of filariasis. Thus, in this study the activities of caffeic acid phenethyl ester (CAPE) against the filarial worm B. pahangi and its bacterial endosymbiont, Wolbachia were evaluated. Different concentrations (2, 5, 10, 15, 20 μg/ml) of CAPE were used to assess its effects on motility, viability and microfilarial (mf) production of B. pahangi in vitro. Anti-Wolbachial activity of CAPE was measured in worms by quantification of Wolbachial wsp gene copy number using real-time polymerase chain reaction. Our findings show that CAPE was found to significantly reduce adult worm motility, viability, and mf release both in vitro and in vivo. 20 μg/ml of CAPE halts the release of mf in vitro by day 6 of post treatment. Also, the number of adult worms recovered in vivo were reduced significantly during and after treatment with 50 mg/kg of CAPE relative to control drugs, diethylcarbamazine and doxycycline. Real time PCR based on the Wolbachia ftsZ gene revealed a significant reduction in Wolbachia copy number upon treatment. Anti-Wolbachia and antifilarial properties of CAPE require further investigation as an alternative strategy to treat LF.
    Matched MeSH terms: Filariasis/parasitology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links