Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Jiang H, Mani MP, Jaganathan SK
    Int J Nanomedicine, 2019;14:8149-8159.
    PMID: 31632024 DOI: 10.2147/IJN.S214646
    INTRODUCTION: Recently several new approaches were emerging in bone tissue engineering to develop a substitute for remodelling the damaged tissue. In order to resemble the native extracellular matrix (ECM) of the human tissue, the bone scaffolds must possess necessary requirements like large surface area, interconnected pores and sufficient mechanical strength.

    MATERIALS AND METHODS: A novel bone scaffold has been developed using polyurethane (PE) added with wintergreen (WG) and titanium dioxide (TiO2). The developed nanocomposites were characterized through field emission scanning electron microscopy (FESEM), Fourier transform and infrared spectroscopy (FTIR), X-ray diffraction (XRD), contact angle measurement, thermogravimetric analysis (TGA), atomic force microscopy (AFM) and tensile testing. Furthermore, anticoagulant assays, cell viability analysis and calcium deposition were used to investigate the biological properties of the prepared hybrid nanocomposites.

    RESULTS: FESEM depicted the reduced fibre diameter for the electrospun PE/WG and PE/WG/TiO2 than the pristine PE. The addition of WG and TiO2 resulted in the alteration in peak intensity of PE as revealed in the FTIR. Wettability measurements showed the PE/WG showed decreased wettability and the PE/WG/TiO2 exhibited improved wettability than the pristine PE. TGA measurements showed the improved thermal behaviour for the PE with the addition of WG and TiO2. Surface analysis indicated that the composite has a smoother surface rather than the pristine PE. Further, the incorporation of WG and TiO2 improved the anticoagulant nature of the pristine PE. In vitro cytotoxicity assay has been performed using fibroblast cells which revealed that the electrospun composites showed good cell attachment and proliferation after 5 days. Moreover, the bone apatite formation study revealed the enhanced deposition of calcium content in the fabricated composites than the pristine PE.

    CONCLUSION: Fabricated nanocomposites rendered improved physico-chemical properties, biocompatibility and calcium deposition which are conducive for bone tissue engineering.

    Matched MeSH terms: Bone and Bones/physiology*
  2. Norazlina M, Ima-Nirwana S, Abul Gapor MT, Abdul Kadir Khalid B
    Asia Pac J Clin Nutr, 2002;11(3):194-9.
    PMID: 12230232
    In this study the effects of vitamin E deficiency and supplementation on bone calcification were determined using 4-month-old female Sprague-Dawley rats. The rats weighed between 180 and 200 g. The study was divided in three parts. In experiment I the rats were given normal rat chow (RC, control group), a vitamin E deficient (VED) diet or a 50% vitamin E deficient (50%VED) diet. In experiment 2 the rats were given VED supplemented with 30 mg/kg palm vitamin E (PVE30), 60 mg/kg palm vitamin E (PVE60) or 30 mg/kg pure alpha-tocopherol (ATF). In experiment 3 the rats were fed RC and given the same supplements as in experiment 2. The treatment lasted 8 months. Vitamin E derived from palm oil contained a mixture of ATF and tocotrienols. Rats on the VED and 50%VED diets had lower bone calcium content in the left femur compared to the RC group (91.6 +/- 13.3 mg and 118.3 +/- 26.0 mg cf 165.7 +/- 15.2 mg; P < 0.05) and L5 vertebra (28.3 +/- 4.0 mg and 39.5 +/- 6.2 mg compared with 51.4 +/- 5.8 mg; P < 0.05). Supplementing the VED group with PVE60 improved bone calcification in the left femur (133.6 +/- 5.0 mg compared with 91.6 +/- 13.3 mg; P < 0.05) and L5 vertebra (41.3 +/- 3.3 mg compared with 28.3 +/- 4.0 mg; P < 0.05) while supplementation with PVE30 improved bone calcium content in the L5 vertebra (35.6 +/- 3.1 mg compared with 28.3 +/- 4.0 mg; P < 0.05). However, supplementation with ATF did not change the lumbar and femoral bone calcium content compared to the VED group. Supplementing the RC group with PVE30, PVE60 or ATF did not cause any significant changes in bone calcium content. In conclusion, vitamin E deficiency impaired bone calcification. Supplementation with the higher dose of palm vitamin E improved bone calcium content, but supplementation with pure ATF alone did not. This effect may be attributed to the tocotrienol content of palm vitamin E. Therefore, tocotrienols play an important role in bone calcification.
    Matched MeSH terms: Bone and Bones/physiology*
  3. Shuid AN, Mehat Z, Mohamed N, Muhammad N, Soelaiman IN
    J. Bone Miner. Metab., 2010 Mar;28(2):149-56.
    PMID: 19779668 DOI: 10.1007/s00774-009-0122-2
    Recently, vitamin E has been found to promote the bone structure of nicotine-treated rats well above their baseline values, thus suggesting that vitamin E may have some anabolic action. A bone anabolic agent acts by improving the bone structure leading to stronger bone. To assess the possible anabolic action vitamin E on bone, we supplemented alpha-tocopherol (ATF) or gamma-tocotrienol (GTT) at 60 mg/kg or vehicle [normal control (NC) group] for 4 months to normal male rats and measured their bone structure and biomechanical properties. Histomorphometric analysis revealed that vitamin E-supplemented rats have better trabecular volume, thickness, number, and separation than rats receiving vehicle only. For the first time we reported that GTT improves all the parameters of bone biomechanical strength, while ATF only improved some of the parameters compared to the NC group. Vitamin E supplementation, especially with the gamma isomer, improves bone structure, which contributed to stronger bone. Therefore, vitamin E has the potential to be used as an anabolic agent to treat osteoporosis or as bone supplements for young adults to prevent osteoporosis in later years.
    Matched MeSH terms: Bone and Bones/physiology*
  4. Chao CY, Mani MP, Jaganathan SK
    PLoS One, 2018;13(10):e0205699.
    PMID: 30372449 DOI: 10.1371/journal.pone.0205699
    Essential oils play an important role in reducing the pain and inflammation caused by bone fracture.In this study, a scaffold was electrospun based on polyurethane (PU), grape seed oil, honey and propolis for bone tissue-engineering applications. The fiber diameter of the electrospun PU/grape seed oil scaffold and PU/grape seed oil/honey/propolis scaffold were observed to be reduced compared to the pristine PU control. FTIR analysis revealed the existence of grape seed oil, honey and propolis in PU identified by CH band peak shift and also hydrogen bond formation. The contact angle of PU/grape seed oil scaffold was found to increase owing to hydrophobic nature and the contact angle for the PU/grape seed/honey oil/propolis scaffold were decreased because of hydrophilic nature. Further, the prepared PU/grape seed oil and PU/grape seed oil/honey/propolis scaffold showed enhanced thermal stability and reduction in surface roughness than the control as revealed in thermogravimetric analysis (TGA) and atomic force microscopy (AFM) analysis. Further, the developed nanocomposite scaffold displayed delayed blood clotting time than the pristine PU in the activated prothrombin time (APTT) and partial thromboplastin time (PT) assay. The hemolytic assay and cytocompatibility studies revealed that the electrospun PU/grape seed oil and PU/grape seed oil/honey/propolis scaffold possess non-toxic behaviour to red blood cells (RBC) and human fibroblast cells (HDF) cells indicating better blood compatibility and cell viability rates. Hence, the newly developed electrospun nanofibrous composite scaffold with desirable characteristics might be used as an alternative candidate for bone tissue engineering applications.
    Matched MeSH terms: Bone and Bones/physiology*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links