Displaying publications 21 - 40 of 87 in total

Abstract:
Sort:
  1. Mpofu E, Alias A, Tomita K, Suzuki-Minakuchi C, Tomita K, Chakraborty J, et al.
    Chemosphere, 2021 Jun;273:129663.
    PMID: 33515965 DOI: 10.1016/j.chemosphere.2021.129663
    Azoxystrobin (AZ) is a broad-spectrum synthetic fungicide widely used in agriculture globally. However, there are concerns about its fate and effects in the environment. It is reportedly transformed into azoxystrobin acid as a major metabolite by environmental microorganisms. Bacillus licheniformis strain TAB7 is used as a compost deodorant in commercial compost and has been found to degrade some phenolic and agrochemicals compounds. In this article, we report its ability to degrade azoxystrobin by novel degradation pathway. Biotransformation analysis followed by identification by electrospray ionization-mass spectrometry (MS), high-resolution MS, and nuclear magnetic resonance spectroscopy identified methyl (E)-3-amino-2-(2-((6-(2-cyanophenoxy)pyrimidin-4-yl)oxy)phenyl)acrylate, or (E)-azoxystrobin amine in short, and (Z) isomers of AZ and azoxystrobin amine as the metabolites of (E)-AZ by TAB7. Bioassay testing using Magnaporthe oryzae showed that although 40 μg/mL of (E)-AZ inhibited 59.5 ± 3.5% of the electron transfer activity between mitochondrial Complexes I and III in M. oryzae, the same concentration of (E)-azoxystrobin amine inhibited only 36.7 ± 15.1% of the activity, and a concentration of 80 μg/mL was needed for an inhibition rate of 56.8 ± 7.4%, suggesting that (E)-azoxystrobin amine is less toxic than the parent compound. To our knowledge, this is the first study identifying azoxystrobin amine as a less-toxic metabolite from bacterial AZ degradation and reporting on the enzymatic isomerization of (E)-AZ to (Z)-AZ, to some extent, by TAB7. Although the fate of AZ in the soil microcosm supplemented with TAB7 will be needed, our findings broaden our knowledge of possible AZ biotransformation products.
    Matched MeSH terms: Ascomycota
  2. Yeu NS, Nordin FA, Othman AS
    Trop Life Sci Res, 2016 Aug;27(2):103-9.
    PMID: 27688854 MyJurnal DOI: 10.21315/tlsr2016.27.2.8
    Five new records of terrestrial and lithophytic orchid species were gathered from Penang Hill, Pulau Pinang, Malaysia namely Bulbophyllum depressum, Goodyera pusilla, Peristylus monticola, Podochilus microphyllus, and Zeuxine gracilis. Checklist of each species is provided and their distribution in Penang Hill is discussed.
    Matched MeSH terms: Ascomycota
  3. Kiew R, Kamin I
    PhytoKeys, 2018.
    PMID: 29706787 DOI: 10.3897/phytokeys.96.20878
    Two new species, Phlegmariurus iminii Kiew (Lycopodiaceae) from limestone karst and P. monticola Kiew from montane habitats, are described from Peninsular Malaysia and a new combination is made for Phlegmariurus pinifolius (Trevis.) Kiew. Phlegmariurus iminii, known from a single hill threatened by quarrying, is Critically Endangered; while P. monticola and P. pinifolius that are relatively widespread are of Least Concern.
    Matched MeSH terms: Ascomycota
  4. Mazlan NW, Tate R, Yusoff YM, Clements C, Edrada-Ebel R
    Curr Med Chem, 2020;27(11):1815-1835.
    PMID: 31272343 DOI: 10.2174/0929867326666190704130105
    Endophytic fungi have been explored not just for their ecological functions but also for their secondary metabolites as a new source of these pharmacologically active natural products. Accordingly, many structurally unique and biologically active compounds have been obtained from the cultures of endophytic fungi. Fusarium sp. and Lasiodiplodia theobromae were isolated from the root and stem of the mangrove plant Avicennia lanata, respectively, collected from Terengganu, Malaysia. High-resolution mass spectrometry and NMR spectroscopy were used as metabolomics profiling tools to identify and optimize the production of bioactive secondary metabolites in both strains at different growth stages and culture media. The spectral data was processed by utilizing Mzmine 2, a quantitative expression analysis software and an in house MS-Excel macro coupled with the Dictionary of Natural Products databases for dereplication studies. The investigation for the potential bioactive metabolites from a 15-day rice culture of Fusarium sp. yielded four 1,4- naphthoquinone with naphthazarin structures (1-4). On the other hand, the endophytic fungus L. theobromae grown on the 15-day solid rice culture produced dihydroisocoumarins (5-8). All the isolated compounds (1-8) showed significant activity against Trypanosoma brucei brucei with MIC values of 0.32-12.5 µM. Preliminary cytotoxicity screening against normal prostate cells (PNT2A) was also performed. All compounds exhibited low cytotoxicity, with compounds 3 and 4 showing the lowest cytotoxicity of only 22.3% and 38.6% of the control values at 100 µg/mL, respectively. Structure elucidation of the isolated secondary metabolites was achieved using 2D-NMR and HRESI-MS as well as comparison with literature data.
    Matched MeSH terms: Ascomycota
  5. Brearley FQ
    Data Brief, 2020 Apr;29:105112.
    PMID: 31993470 DOI: 10.1016/j.dib.2020.105112
    The soil fungal community of the Klang Gates quartz ridge in Malaysia was determined by ITS amplicon sequencing using the Illumina HiSeq platform. The community contained 2767 OTUs, 47% of which could not be assigned to a phylum, likely representing new lineages. Those that could be assigned were found within 5 phyla, 16 classes, 49 orders and 98 families with over 85% of these within the Ascomycota. Sequence data is available from the NCBI's Sequence Read Archive (PRJNA542066). This data illustrates the microbial diversity in a particularly nutrient poor tropical soil and can be used for broader-scale comparisons of microbial distributions.
    Matched MeSH terms: Ascomycota
  6. Ng KP, Yew SM, Chan CL, Soo-Hoo TS, Na SL, Hassan H, et al.
    Eukaryot Cell, 2012 Jun;11(6):828.
    PMID: 22645233 DOI: 10.1128/EC.00133-12
    Pleosporales is the largest order in the fungal class Dothideomycetes. We report the 36,814,818-bp draft genome sequence and gene annotation of UM1110, a Pleosporales isolate associated with unclassified genera that is potentially a new fungal species. Analysis of the genome sequence led to the finding of genes associated with fungal adhesive proteins, secreted proteases, allergens, and pseudohyphal development.
    Matched MeSH terms: Ascomycota/classification; Ascomycota/genetics*; Ascomycota/isolation & purification*
  7. Yew SM, Chan CL, Kuan CS, Toh YF, Ngeow YF, Na SL, et al.
    BMC Genomics, 2016 Feb 03;17:91.
    PMID: 26842951 DOI: 10.1186/s12864-016-2409-8
    Ochroconis mirabilis, a recently introduced water-borne dematiaceous fungus, is occasionally isolated from human skin lesions and nails. We identified an isolate of O. mirabilis from a skin scraping with morphological and molecular studies. Its genome was then sequenced and analysed for genetic features related to classification and biological characteristics.
    Matched MeSH terms: Ascomycota/classification*; Ascomycota/genetics*; Ascomycota/growth & development; Ascomycota/metabolism
  8. Adam BA, Soo-Hoo TS, Chong KC
    Australas J Dermatol, 1977 Apr;18(1):45-7.
    PMID: 883925
    Matched MeSH terms: Ascomycota/isolation & purification
  9. Nagarajan K, Tong WY, Leong CR, Tan WN
    J Microbiol Biotechnol, 2021 Apr 28;31(4):493-500.
    PMID: 32627761 DOI: 10.4014/jmb.2005.05012
    Endophytic fungi are symbiotically related to plants and spend most of their life cycle within them. In nature, they have a crucial role in plant micro-ecosystem. They are harnessed for their bioactive compounds to counter human health problems and diseases. Endophytic Diaporthe sp. is a widely distributed fungal genus that has garnered much interest within the scientific community. A substantial number of secondary metabolites have been detected from Diaporthe sp. inhabited in various plants. As such, this minireview highlights the potential of Diaporthe sp. as a rich source of bioactive compounds by emphasizing on their diverse chemical entities and potent biological properties. The bioactive compounds produced are of significant importance to act as new lead compounds for drug discovery and development.
    Matched MeSH terms: Ascomycota/chemistry*
  10. Fung SY, Lee SS, Tan NH, Pailoor J
    J Ethnopharmacol, 2017 Jul 12;206:236-244.
    PMID: 28587826 DOI: 10.1016/j.jep.2017.05.037
    ETHNOPHARMACOLOGICAL RELEVANCE: Ophiocordyceps sinensis (Berk.) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora is one of the most renowned traditional Chinese medicine used as tonic, renal, respiratory and reproductive health, promote longevity and overall improvement in quality of life. Natural production of O. sinensis is limited due to its extreme specificity in host range and confined geographic distribution. Therefore, cultivation of the fungus was developed to meet high demand for commercialization as nutraceutical. O. sinensis fruiting body has recently been successfully cultivated in large scale using rice based solid medium, providing wider source options for consumers and scientific researchers.

    AIMS OF THE STUDY: The present study aims to establish safety profile for the consumption of cultivated fruiting body of O. sinensis (FBOS) by 28-days sub-acute toxicity study in Sprague Dawley rats.

    MATERIALS AND METHODS: Rats were orally administered with cultivated FBOS at three graded doses (250, 500 and 1000mg/kg), once daily for 28 consecutive days. Control group received distilled water. General observations (gross behavioral changes and toxic symptoms) and body weight of each animal were monitored daily. Haematological, serum biochemical and histopathological analysis were carried out at the end of the experiment (Day 29).

    RESULTS: No behavioral changes, toxic symptoms or death was observed in rats throughout the dosing period. Cultivated FBOS treatment up to 1000mg/kg did not cause any adverse effect on the growth of the animals. Results from haematology and serum biochemistry revealed no toxic effect following cultivated FBOS treatment at three graded doses for 28 days. In addition, no treatment related histopathological changes were noted in heart, spleen, kidney, lung and liver of the animals.

    CONCLUSION: The present study revealed that oral administration of cultivated FBOS for 28 days, at dosage up to 1000mg/kg did not pose toxicological concern in rats. Therefore, the no-observed-adverse-effect level (NOAEL) dose of cultivated FBOS in 28-days subacute toxicity study is higher than 1000mg/kg.

    Matched MeSH terms: Ascomycota*
  11. Yenn TW, Lee CC, Ibrahim D, Zakaria L
    J Microbiol, 2012 Aug;50(4):581-5.
    PMID: 22923105 DOI: 10.1007/s12275-012-2083-8
    This study examined the effect of host extract in the culture medium on anti-candidal activity of Phomopsis sp. ED2, previously isolated from the medicinal herb Orthosiphon stamineus Benth. Interestingly, upon addition of aqueous host extract to the culture medium, the ethyl acetate extract prepared from fermentative broth exhibited moderate anti-candidal activity in a disc diffusion assay. The minimal inhibitory concentration of this extract was 62.5 μg/ml and it only exhibited fungistatic activity against C. albicans. In the time-kill study, a 50% growth reduction of C. albicans was observed at 31.4 h for extract from the culture incorporating host extract. In the bioautography assay, only one single spot (Rf 0.59) developed from the extract exhibited anti-candidal activity. A spot with the a similar Rf was not detected for the crude extract from YES broth without host extract. This indicated that the terpenoid anti-candidal compound was only produced when the host extract was introduced into the medium. The study concluded that the incorporation of aqueous extract of the host plant into the culture medium significantly enhanced the anti-candidal activity of Phomopsis sp. ED2.
    Matched MeSH terms: Ascomycota/isolation & purification; Ascomycota/metabolism; Ascomycota/physiology*
  12. M Hussain FB, Al-Khdhairawi AAQ, Kok Sing H, Muhammad Low AL, Anouar EH, Thomas NF, et al.
    J Nat Prod, 2020 12 24;83(12):3493-3501.
    PMID: 33233893 DOI: 10.1021/acs.jnatprod.9b01105
    Svalbardines A and B (1 and 2) and annularin K (3) were isolated from cultures of Poaceicola sp. E1PB, an endophyte isolated from the petals of Papaver dahlianum from Svalbard, Norway. Svalbardine A (1) is a pyrano[3,2-c]chromen-4-one, a new analogue of citromycetin. Svalbardine B (2) displays an unprecedented carbon skeleton based on a 5'-benzyl-spiro[chroman-3,7'-isochromene]-4,8'-dione core. Annularin K (3) is a hydroxylated derivative of annularin D. The structure of these new polyketides, along with those of known compounds 4-6, was established by spectrometric analysis, including extensive ESI-CID-MS
    n
    processing in the case of svalbardine B (2).
    Matched MeSH terms: Ascomycota
  13. Toh YF, Yew SM, Chan CL, Na SL, Lee KW, Hoh CC, et al.
    PLoS One, 2016;11(9):e0162095.
    PMID: 27626635 DOI: 10.1371/journal.pone.0162095
    Pyrenochaeta unguis-hominis is a rare human pathogen that causes infection in human skin and nail. P. unguis-hominis has received little attention, and thus, the basic biology and pathogenicity of this fungus is not fully understood. In this study, we performed in-depth analysis of the P. unguis-hominis UM 256 genome that was isolated from the skin scraping of a dermatitis patient. The isolate was identified to species level using a comprehensive multilocus phylogenetic analysis of the genus Pyrenochaeta. The assembled UM 256 genome has a size of 35.5 Mb and encodes 12,545 putative genes, and 0.34% of the assembled genome is predicted transposable elements. Its genomic features propose that the fungus is a heterothallic fungus that encodes a wide array of plant cell wall degrading enzymes, peptidases, and secondary metabolite biosynthetic enzymes. Antifungal drug resistance genes including MDR, CDR, and ERG11/CYP51 were identified in P. unguis-hominis UM 256, which may confer resistance to this fungus. The genome analysis of P. unguis-hominis provides an insight into molecular and genetic basis of the fungal lifestyles, understanding the unrevealed biology of antifungal resistance in this fungus.
    Matched MeSH terms: Ascomycota/drug effects; Ascomycota/genetics*; Ascomycota/metabolism
  14. Kuan CS, Cham CY, Singh G, Yew SM, Tan YC, Chong PS, et al.
    PLoS One, 2016;11(8):e0161008.
    PMID: 27570972 DOI: 10.1371/journal.pone.0161008
    Cladophialophora bantiana is a dematiaceous fungus with a predilection for causing central nervous system (CNS) infection manifesting as brain abscess in both immunocompetent and immunocompromised patients. In this paper, we report comprehensive genomic analyses of C. bantiana isolated from the brain abscess of an immunocompetent man, the first reported case in Malaysia and Southeast Asia. The identity of the fungus was determined using combined morphological analysis and multilocus phylogeny. The draft genome sequence of a neurotrophic fungus, C. bantiana UM 956 was generated using Illumina sequencing technology to dissect its genetic fundamental and basic biology. The assembled 37.1 Mb genome encodes 12,155 putative coding genes, of which, 1.01% are predicted transposable elements. Its genomic features support its saprophytic lifestyle, renowned for its versatility in decomposing hemicellulose and pectin components. The C. bantiana UM 956 was also found to carry some important putative genes that engaged in pathogenicity, iron uptake and homeostasis as well as adaptation to various stresses to enable the organism to survive in hostile microenvironment. This wealth of resource will further catalyse more downstream functional studies to provide better understanding on how this fungus can be a successful and persistent pathogen in human.
    Matched MeSH terms: Ascomycota/classification; Ascomycota/genetics; Ascomycota/pathogenicity*
  15. Law JW, Ser HL, Khan TM, Chuah LH, Pusparajah P, Chan KG, et al.
    Front Microbiol, 2017;8:3.
    PMID: 28144236 DOI: 10.3389/fmicb.2017.00003
    Rice is a staple food source for more than three billion people worldwide. However, rice is vulnerable to diseases, the most destructive among them being rice blast, which is caused by the fungus Magnaporthe oryzae (anamorph Pyricularia oryzae). This fungus attacks rice plants at all stages of development, causing annual losses of approximately 10-30% in various rice producing regions. Synthetic fungicides are often able to effectively control plant diseases, but some fungicides result in serious environmental and health problems. Therefore, there is growing interest in discovering and developing new, improved fungicides based on natural products as well as introducing alternative measures such as biocontrol agents to manage plant diseases. Streptomyces bacteria appear to be promising biocontrol agents against a wide range of phytopathogenic fungi, which is not surprising given their ability to produce various bioactive compounds. This review provides insight into the biocontrol potential of Streptomyces against the rice blast fungus, M. oryzae. The ability of various Streptomyces spp. to act as biocontrol agents of rice blast disease has been studied by researchers under both laboratory and greenhouse/growth chamber conditions. Laboratory studies have shown that Streptomyces exhibit inhibitory activity against M. oryzae. In greenhouse studies, infected rice seedlings treated with Streptomyces resulted in up to 88.3% disease reduction of rice blast. Studies clearly show that Streptomyces spp. have the potential to be used as highly effective biocontrol agents against rice blast disease; however, the efficacy of any biocontrol agent may be affected by several factors including environmental conditions and methods of application. In order to fully exploit their potential, further studies on the isolation, formulation and application methods of Streptomyces along with field experiments are required to establish them as effective biocontrol agents.
    Matched MeSH terms: Ascomycota
  16. Rajandran S, Razali KM, Mustapha M, Palaniappan PA, Amran F
    Case Rep Ophthalmol Med, 2020;2020:5861258.
    PMID: 32774963 DOI: 10.1155/2020/5861258
    Cyphellophora is a black yeast-like fungus with most of the strains being isolated from soil and plants. It tends to cause sooty blotch and flyspeck disease in plants. In humans, it is known to cause superficial skin and nail infections. This report highlights the case of a patient who initially presented with a small corneal abrasion which rapidly progressed into a corneal ulcer after the patient did not respond to the initial conventional treatment. The laboratory results from the corneal scraping found it to be Cyphellophora sp.
    Matched MeSH terms: Ascomycota
  17. Mohamed R, Jong PL, Nurul Irdayu I
    World J Microbiol Biotechnol, 2014 Sep;30(9):2427-36.
    PMID: 24840100 DOI: 10.1007/s11274-014-1668-2
    Aquilaria malaccensis produces agarwood in response to wounding and fungal attack. However, information is limited regarding Aquilaria's interaction with its diverse fungal community. In this study, time-related changes of three natural fungal colonizers in two wounded wild A. malaccensis were tracked, beginning a few hours after wounding up to 12 months. Using species-specific primers derived from their nrITS sequences in quantitative real-time PCR (qPCR), we quantified the amount of Cunninghamella bainieri, Fusarium solani and Lasiodiplodia theobromae. Because time is a major factor affecting agarwood quantity and quality, 14 wood samples were collected at different time points, i.e., 0-18 h, 2-13 days, 2-18 weeks, and 6-12 months after wounding. qPCR data revealed that the abundance of the three species decreased over time. The fungi were detected in high numbers during the first few hours and days after wounding (40- to 25,000-fold higher levels compared with initial counts) and in low numbers (<1- to 3,200-fold higher than initially) many months later. Consistent with its role in defense response, the accumulation of secondary metabolites at the wounding site could have caused the decline in fungal abundance. Succession patterns of the two trees were not identical, indicating that fungal populations may have been affected by tree environment and wound microclimate. Our results are important for understanding the diversity of microbial community in wild Aquilaria species and their association to wound-induced agarwood formation. Fungi could be secondary triggers to agarwood production in situations where trees are wounded in attempt to induce agarwood.
    Matched MeSH terms: Ascomycota/growth & development*; Ascomycota/isolation & purification
  18. Bahrin EK, Ibrahim MF, Abd Razak MN, Abd-Aziz S, Shah UK, Alitheen N, et al.
    Prep Biochem Biotechnol, 2012;42(2):155-70.
    PMID: 22394064 DOI: 10.1080/10826068.2011.585413
    The response surface method was applied in this study to improve cellulase production from oil palm empty fruit bunch (OPEFB) by Botryosphaeria rhodina. An experimental design based on a two-level factorial was employed to screen the significant environmental factors for cellulase production. The locally isolated fungus Botryosphaeria rhodina was cultivated on OPEFB under solid-state fermentation (SSF). From the analysis of variance (ANOVA), the initial moisture content, amount of substrate, and initial pH of nutrient supplied in the SSF system significantly influenced cellulase production. Then the optimization of the variables was done using the response surface method according to central composite design (CCD). Botryosphaeria rhodina exhibited its best performance with a high predicted value of FPase enzyme production (17.95 U/g) when the initial moisture content was at 24.32%, initial pH of nutrient was 5.96, and 3.98 g of substrate was present. The statistical optimization from actual experiment resulted in a significant increment of FPase production from 3.26 to 17.91 U/g (5.49-fold). High cellulase production at low moisture content is a very rare condition for fungi cultured in solid-state fermentation.
    Matched MeSH terms: Ascomycota/enzymology*; Ascomycota/metabolism
  19. Mohd-Assaad N, McDonald BA, Croll D
    Environ Microbiol, 2019 08;21(8):2677-2695.
    PMID: 30838748 DOI: 10.1111/1462-2920.14583
    Plant pathogens secrete effector proteins to manipulate the host and facilitate infection. Cognate hosts trigger strong defence responses upon detection of these effectors. Consequently, pathogens and hosts undergo rapid coevolutionary arms races driven by adaptive evolution of effectors and receptors. Because of their high rate of turnover, most effectors are thought to be species-specific and the evolutionary trajectories are poorly understood. Here, we investigate the necrosis-inducing protein 1 (NIP1) effector in the multihost pathogen genus Rhynchosporium. We retraced the evolutionary history of the NIP1 locus using whole-genome assemblies of 146 strains covering four closely related species. NIP1 orthologues were present in all species but the locus consistently segregated presence-absence polymorphisms suggesting long-term balancing selection. We also identified previously unknown paralogues of NIP1 that were shared among multiple species and showed substantial copy-number variation within R. commune. The NIP1A paralogue was under significant positive selection suggesting that NIP1A is the dominant effector variant coevolving with host immune receptors. Consistent with this prediction, we found that copy number variation at NIP1A had a stronger effect on virulence than NIP1B. Our analyses unravelled the origins and diversification mechanisms of a pathogen effector family shedding light on how pathogens gain adaptive genetic variation.
    Matched MeSH terms: Ascomycota/genetics*; Ascomycota/physiology
  20. Fahim Abbas M, Batool S, Khaliq S, Mubeen S, Azziz-Ud-Din, Ullah N, et al.
    PLoS One, 2021;16(10):e0257951.
    PMID: 34648523 DOI: 10.1371/journal.pone.0257951
    Loquat [Eriobotrya japonica (Thunb.) Lindl.] is an important fruit crop in Pakistan; however, a constant decline in its production is noted due biotic and abiotic stresses, particularly disease infestation. Fungal pathogens are the major disease-causing agents; therefore, their identification is necessary for devising management options. This study explored Taxila, Wah-Cantt, Tret, Chatar, Murree, Kalar-Kahar, Choa-Saidan-Shah and Khan-Pur districts in the Punjab and Khyber Paktoon Khawa (KPK) provinces of Pakistan to explore the diversity of fungal pathogens associated with loquat. The samples were collected from these districts and their microscopic characterizations were accomplished for reliable identification. Alternaria alternata, Curvularia lunata, Lasiodiplodia theobromae, Aspergilus flavis, Botrytis cinerea, Chaetomium globosum, Pestalotiopsis mangiferae and Phomopsis sp. were the fungal pathogens infesting loquat in the study area. The isolates of A. alternata and C. lunata were isolated from leaf spots and fruit rot, while the isolates of L. theobromae were associated with twig dieback. The remaining pathogens were allied with fruit rot. The nucleotide evidence of internal transcribed spacer (ITS) regions (ITS1, 5.8S, and ITS2) were computed from all the pathogens and submitted in the database of National Center for Biotechnology Information (NCBI). For multigene analysis, beta-tubulin (BT) gene and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) regions were explored for A. alternata and C. lunata isolates, respectively. The virulence scales of leaf spots, fruit rot, and twig dieback diseases of loquat were developed for the first time through this study. It is the first comprehensive study with morpho-molecular identification, and newly developed virulence scales of the fungal pathogens associated with loquat, which improves the understanding of these destructive diseases.
    Matched MeSH terms: Ascomycota/genetics; Ascomycota/pathogenicity*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links